1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
/*
* Ruby interface for ALF, a library to calculate associated Legendre functions by Patrick Alken
* Based on ALF-0.1
*/
#ifdef HAVE_ALF_ALF_H
#include "include/rb_gsl.h"
static VALUE cWspace;
static VALUE rb_alf_alloc(VALUE klass, VALUE lmax)
{
alf_workspace *w = NULL;
w = alf_alloc(FIX2INT(lmax));
return Data_Wrap_Struct(cWspace, 0, alf_free, w);
}
static VALUE rb_alf_params(VALUE obj, VALUE csphase, VALUE cnorm, VALUE norm)
{
alf_workspace *w;
int ret;
Data_Get_Struct(obj, alf_workspace, w);
ret = alf_params(FIX2INT(csphase), FIX2INT(cnorm), (alf_norm_t) FIX2INT(norm), w);
return INT2FIX(ret);
}
static void define_constants(VALUE klass)
{
rb_define_const(klass, "NORM_NONE", INT2FIX((int) ALF_NORM_NONE));
rb_define_const(klass, "NORM_SPHARM", INT2FIX((int) ALF_NORM_SPHARM));
rb_define_const(klass, "NORM_ORTHO", INT2FIX((int) ALF_NORM_ORTHO));
rb_define_const(klass, "NORM_SCHMIDT", INT2FIX((int) ALF_NORM_SCHMIDT));
}
/**
* arguments:
* - Plm_array(x) : lmax = w->lmax, A new vector is created
* - Plm_array(x, result) : lmax = w->lmax, the given vector is used
* - Plm_array(lmax, x) : A new vector is created
* - Plm_array(lmax, x, result) : Same as C Plm_array()
* - Plm_array(x, result, deriv) : lmax = w->lmax, calcurate Plm_deriv_array(lmax, x, result, deriv)
* - Plm_array(lmax, x, result, deriv) : Same as C alf_Plm_deriv_array
*/
static VALUE rb_alf_Plm_array(int argc, VALUE *argv, VALUE obj)
{
alf_workspace *w = NULL;
gsl_vector *res = NULL, *deriv = NULL;
int lmax;
double x;
VALUE ret;
Data_Get_Struct(obj, alf_workspace, w);
switch (argc) {
case 1:
x = NUM2DBL(argv[0]);
lmax = w->lmax;
res = gsl_vector_alloc(alf_array_size(lmax));
ret = Data_Wrap_Struct(cgsl_vector, 0, gsl_vector_free, res);
break;
case 2: // Plm_array(x, result) or Plm_array(lmax, x)
if (VECTOR_P(argv[1])) {
x = NUM2DBL(argv[0]);
Data_Get_Struct(argv[1], gsl_vector, res);
lmax = w->lmax;
if (res->size < alf_array_size(lmax)) {
rb_raise(rb_eRuntimeError, "Vector length is too small. (%d for >= %d\n", (int) res->size,
(int) alf_array_size(lmax));
}
ret = argv[1];
} else {
lmax = FIX2INT(argv[0]);
x = NUM2DBL(argv[1]);
res = gsl_vector_alloc(alf_array_size(lmax));
ret = Data_Wrap_Struct(cgsl_vector, 0, gsl_vector_free, res);
}
break;
case 3: // Plm_array(lmax, x, result) or Plm_array(x, result, deriv)
if (VECTOR_P(argv[1])) {
CHECK_VECTOR(argv[2]);
lmax = w->lmax;
x = NUM2DBL(argv[0]);
Data_Get_Struct(argv[1], gsl_vector, res);
Data_Get_Struct(argv[2], gsl_vector, deriv);
ret = argv[1];
} else {
lmax = FIX2INT(argv[0]);
x = NUM2DBL(argv[1]);
CHECK_VECTOR(argv[2]);
Data_Get_Struct(argv[2], gsl_vector, res);
if (res->size < alf_array_size(lmax)) {
rb_raise(rb_eRuntimeError, "Vector length is too small. (%d for >= %d\n", (int) res->size,
(int) alf_array_size(lmax));
}
ret = argv[2];
}
break;
case 4:
CHECK_VECTOR(argv[2]); CHECK_VECTOR(argv[3])
lmax = FIX2INT(argv[0]);
x = NUM2DBL(argv[1]);
Data_Get_Struct(argv[2], gsl_vector, res);
Data_Get_Struct(argv[3], gsl_vector, deriv);
ret = argv[2];
break;
default:
rb_raise(rb_eArgError, "Wrong number of argumentso (%d for 1-3)\n", argc);
}
if (argc == 4 && deriv != NULL) alf_Plm_deriv_array(lmax, x, res->data, deriv->data, w);
else alf_Plm_array(lmax, x, res->data, w);
return ret;
}
/**
* arguments:
* - Plm_deriv_array(x) : lmax = w->lmax, two new vectors are created and returned as an array
* - Plm_array(lmax, x) : Two new vectors are created and returned as an array
* - Plm_array(lmax, x, result, deriv) : Same as C alf_Plm_deriv_array()
*/
static VALUE rb_alf_Plm_deriv_array(int argc, VALUE *argv, VALUE obj)
{
alf_workspace *w = NULL;
gsl_vector *res = NULL, *deriv = NULL;
int lmax;
double x;
VALUE ret1, ret2, ary;
Data_Get_Struct(obj, alf_workspace, w);
switch (argc) {
case 1:
x = NUM2DBL(argv[0]);
lmax = w->lmax;
res = gsl_vector_alloc(alf_array_size(lmax));
deriv = gsl_vector_alloc(alf_array_size(lmax));
ret1 = Data_Wrap_Struct(cgsl_vector, 0, gsl_vector_free, res);
ret2 = Data_Wrap_Struct(cgsl_vector, 0, gsl_vector_free, deriv);
break;
case 2:
lmax = FIX2INT(argv[1]);
x = NUM2DBL(argv[1]);
res = gsl_vector_alloc(alf_array_size(lmax));
deriv = gsl_vector_alloc(alf_array_size(lmax));
ret1 = Data_Wrap_Struct(cgsl_vector, 0, gsl_vector_free, res);
ret2 = Data_Wrap_Struct(cgsl_vector, 0, gsl_vector_free, deriv);
break;
case 3:
CHECK_VECTOR(argv[1]);
CHECK_VECTOR(argv[2]);
ret1 = argv[1];
ret2 = argv[2];
lmax = w->lmax;
x = NUM2DBL(argv[0]);
break;
case 4:
lmax = FIX2INT(argv[0]);
x = NUM2DBL(argv[1]);
CHECK_VECTOR(argv[2]);
CHECK_VECTOR(argv[3]);
Data_Get_Struct(argv[2], gsl_vector, res);
Data_Get_Struct(argv[3], gsl_vector, deriv);
if (res->size < alf_array_size(lmax)) {
rb_raise(rb_eRuntimeError, "Vector length is too small. (%d for >= %d\n", (int) res->size,
(int) alf_array_size(lmax));
}
if (deriv->size < alf_array_size(lmax)) {
rb_raise(rb_eRuntimeError, "Vector length is too small. (%d for >= %d\n", (int) res->size,
(int) alf_array_size(lmax));
}
ret1 = argv[2];
ret2 = argv[3];
break;
default:
rb_raise(rb_eArgError, "Wrong number of argumentso (%d for 1-4)\n", argc);
}
alf_Plm_deriv_array(lmax, x, res->data, deriv->data, w);
ary = rb_ary_new2(2);
rb_ary_store(ary, 0, ret1);
rb_ary_store(ary, 1, ret2);
return ary;
}
static VALUE rb_alf_array_size(VALUE module, VALUE lmax)
{
return INT2FIX(alf_array_size(FIX2INT(lmax)));
}
static VALUE rb_alf_array_index(VALUE module, VALUE l, VALUE m)
{
return INT2FIX(alf_array_index(FIX2INT(l), FIX2INT(m)));
}
void Init_alf(VALUE module)
{
VALUE mALF;
mALF = rb_define_module_under(module, "ALF");
cWspace = rb_define_class_under(mALF, "Workspace", cGSL_Object);
rb_define_singleton_method(cWspace, "alloc", rb_alf_alloc, 1);
rb_define_singleton_method(mALF, "alloc", rb_alf_alloc, 1);
rb_define_module_function(module, "alf_alloc", rb_alf_alloc, 1);
rb_define_method(cWspace, "params", rb_alf_params, 3);
rb_define_method(cWspace, "Plm_array", rb_alf_Plm_array, -1);
rb_define_method(cWspace, "Plm_deriv_array", rb_alf_Plm_deriv_array, -1);
rb_define_module_function(mALF, "array_size", rb_alf_array_size, 1);
rb_define_module_function(mALF, "array_index", rb_alf_array_index, 2);
define_constants(mALF);
}
#endif
|