1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
require 'test_helper'
class PolyTest < GSL::TestCase
EPS = 100.0 * GSL::DBL_EPSILON
def test_poly
c = GSL::Poly.alloc(1.0, 0.5, 0.3)
x = 0.5
y = c.eval(x)
assert_rel y, 1 + 0.5 * x + 0.3 * x * x, EPS, 'gsl_poly_eval({1, 0.5, 0.3}, 0.5)'
d = GSL::Poly.alloc( 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1)
x = 1.0
y = GSL::Poly.eval(d, x)
assert_rel y, 1.0, EPS, 'gsl_poly_eval({1,-1, 1, -1, 1, -1, 1, -1, 1, -1, 1}, 1.0)'
x0, x1 = GSL::Poly.solve_quadratic(4.0, -20.0, 25.0).to_a
assert_rel x0, 2.5, 1e-9, 'x0, (2x - 5)^2 = 0'
assert_rel x1, 2.5, 1e-9, 'x1, (2x - 5)^2 = 0'
x0, x1 = GSL::Poly.solve_quadratic(4.0, 7.0, 0.0).to_a
assert_rel x0, -1.75, 1e-9, 'x0, x(4x + 7) = 0'
assert_rel x1, 0.0, 1e-9, 'x1, x(4x + 7) = 0'
x0, x1 = GSL::Poly.solve_quadratic(5.0, 0.0, -20.0).to_a
assert_rel x0, -2.0, 1e-9, 'x0, 5 x^2 = 20'
assert_rel x1, 2.0, 1e-9, 'x1, 5 x^2 = 20'
# Quadratic single real root (technically not a quadratic)
x0, x1 = GSL::Poly.solve_quadratic(0.0, 1.0, 0.0).to_a
assert_rel x0, 0.0, 0, 'x0, x = 0'
assert x1.nil?, 'x1, x = 0 is nil'
# Quadratic no real root
x0, x1 = GSL::Poly.solve_quadratic(1.0, 0.0, 1.0).to_a
assert x0.nil?, 'x0, x^2 = -1 is nil'
assert x1.nil?, 'x1, x^2 = -1 is nil'
x0, x1, x2 = GSL::Poly.solve_cubic(0.0, 0.0, -27.0).to_a
assert_rel x0, 3.0, 1e-9, 'x0, x^3 = 27'
# Cubic triple real root
x0, x1, x2 = GSL::Poly.solve_cubic(-51.0, 867.0, -4913.0).to_a
assert_rel x0, 17.0, 1e-9, 'x0, (x-17)^3=0'
assert_rel x1, 17.0, 1e-9, 'x1, (x-17)^3=0'
assert_rel x2, 17.0, 1e-9, 'x2, (x-17)^3=0'
# Cubic double real root plus single real root
x0, x1, x2 = GSL::Poly.solve_cubic(-57.0, 1071.0, -6647.0).to_a
assert_rel x0, 17.0, 1e-9, 'x0, (x-17)(x-17)(x-23)=0'
assert_rel x1, 17.0, 1e-9, 'x1, (x-17)(x-17)(x-23)=0'
assert_rel x2, 23.0, 1e-9, 'x2, (x-17)(x-17)(x-23)=0'
x0, x1, x2 = GSL::Poly.solve_cubic(-11.0, -493.0, +6647.0).to_a
assert_rel x0, -23.0, 1e-9, 'x0, (x+23)(x-17)(x-17)=0'
assert_rel x1, 17.0, 1e-9, 'x1, (x+23)(x-17)(x-17)=0'
assert_rel x2, 17.0, 1e-9, 'x2, (x+23)(x-17)(x-17)=0'
x0, x1, x2 = GSL::Poly.solve_cubic(-143.0, 5087.0, -50065.0).to_a
assert_rel x0, 17.0, 1e-9, 'x0, (x-17)(x-31)(x-95)=0'
assert_rel x1, 31.0, 1e-9, 'x1, (x-17)(x-31)(x-95)=0'
assert_rel x2, 95.0, 1e-9, 'x2, (x-17)(x-31)(x-95)=0'
x0, x1, x2 = GSL::Poly.solve_cubic(-109.0, 803.0, 50065.0).to_a
assert_rel x0, -17.0, 1e-9, 'x0, (x+17)(x-31)(x-95)=0'
assert_rel x1, 31.0, 1e-9, 'x1, (x+17)(x-31)(x-95)=0'
assert_rel x2, 95.0, 1e-9, 'x2, (x+17)(x-31)(x-95)=0'
# Cubic double real root only is impossible
# Cubic single real root (and two complex roots, not returned)
x0, x1, x2 = GSL::Poly.solve_cubic(0.0, 0.0, -1.0).to_a
assert_rel x0, 1.0, 1e-9, 'x0, x^3 = 1'
assert x1.nil?, 'x1, x^3 = 1 is nil'
assert x2.nil?, 'x2, x^3 = 1 is nil'
# Cubic no real root is impossible
z = GSL::Poly::Complex.solve_quadratic(4.0, -20.0, 26.0)
assert_rel z[0].re, 2.5, 1e-9, 'z0.real, (2x - 5)^2 = -1'
assert_rel z[0].im, -0.5, 1e-9, 'z0.imag, (2x - 5)^2 = -1'
assert_rel z[1].re, 2.5, 1e-9, 'z1.real, (2x - 5)^2 = -1'
assert_rel z[1].im, 0.5, 1e-9, 'z1.imag, (2x - 5)^2 = -1'
z = GSL::Poly.complex_solve_quadratic(4.0, -20.0, 25.0)
assert_rel z[0].re, 2.5, 1e-9, 'z0.real, (2x - 5)^2 = 0'
assert_rel z[0].im, 0.0, 1e-9, 'z0.imag (2x - 5)^2 = 0'
assert_rel z[1].re, 2.5, 1e-9, 'z1.real, (2x - 5)^2 = 0'
assert_rel z[1].im, 0.0, 1e-9, 'z1.imag (2x - 5)^2 = 0'
assert_equal z[0].re, z[1].re, 'z0.real == z1.real, (2x - 5)^2 = 0'
assert_equal z[1].im, z[1].im, 'z0.imag == z1.imag, (2x - 5)^2 = 0'
z = GSL::Poly.complex_solve_quadratic(4.0, -20.0, 21.0)
assert_rel z[0].re, 1.5, 1e-9, 'z0.real, (2x - 5)^2 = 4'
assert_rel z[0].im, 0.0, 1e-9, 'z0.imag, (2x - 5)^2 = 4'
assert_rel z[1].re, 3.5, 1e-9, 'z1.real, (2x - 5)^2 = 4'
assert_rel z[1].im, 0.0, 1e-9, 'z1.imag, (2x - 5)^2 = 4'
z = GSL::Poly.complex_solve_quadratic(4.0, 7.0, 0.0)
assert_rel z[0].re, -1.75, 1e-9, 'z[0].real, x(4x + 7) = 0'
assert_rel z[0].im, 0.0, 1e-9, 'z[0].imag, x(4x + 7) = 0'
assert_rel z[1].re, 0.0, 1e-9, 'z[1].real, x(4x + 7) = 0'
assert_rel z[1].im, 0.0, 1e-9, 'z[1].imag, x(4x + 7) = 0'
z = GSL::Poly.complex_solve_quadratic(5.0, 0.0, -20.0)
assert_rel z[0].re, -2.0, 1e-9, 'z[0].real, 5 x^2 = 20'
assert_rel z[0].im, 0.0, 1e-9, 'z[0].imag, 5 x^2 = 20'
assert_rel z[1].re, 2.0, 1e-9, 'z[1].real, 5 x^2 = 20'
assert_rel z[1].im, 0.0, 1e-9, 'z[1].imag, 5 x^2 = 20'
z = GSL::Poly.complex_solve_quadratic(5.0, 0.0, 20.0)
assert_rel z[0].re, 0.0, 1e-9, 'z[0].real, 5 x^2 = -20'
assert_rel z[0].im, -2.0, 1e-9, 'z[0].imag, 5 x^2 = -20'
assert_rel z[1].re, 0.0, 1e-9, 'z[1].real, 5 x^2 = -20'
assert_rel z[1].im, 2.0, 1e-9, 'z[1].imag, 5 x^2 = -20'
# Quadratic single complex root (technically not quadratic and root not
# complex since imaginary component is 0, but the data type is complex)
z = GSL::Poly.complex_solve_quadratic(0.0, 1.0, -1.0)
assert_rel z[0].re, 1.0, 1e-9, 'z[0].real, x = 1 (complex)'
assert_rel z[0].im, 0.0, 0.0, 'z[0].imag, x = 1 (complex)'
assert x1.nil?, 'z[1], x = 0 is nil'
# Quadratic no complex root (technically not quadratic)
z = GSL::Poly.complex_solve_quadratic(0.0, 0.0, 1.0)
assert z[0].nil?, 'z[0], 1 = 0 is nil'
assert z[1].nil?, 'z[1], 1 = 0 is nil'
z = GSL::Poly.complex_solve_cubic(0.0, 0.0, -27.0)
assert_rel z[0].re, -1.5, 1e-9, 'z[0].real, x^3 = 27'
assert_rel z[0].im, -1.5 * Math.sqrt(3.0), 1e-9, 'z[0].imag, x^3 = 27'
assert_rel z[1].re, -1.5, 1e-9, 'z[1].real, x^3 = 27'
assert_rel z[1].im, 1.5 * Math.sqrt(3.0), 1e-9, 'z[1].imag, x^3 = 27'
assert_rel z[2].re, 3.0, 1e-9, 'z[2].real, x^3 = 27'
assert_rel z[2].im, 0.0, 1e-9, 'z[2].imag, x^3 = 27'
z = GSL::Poly.complex_solve_cubic(-1.0, 1.0, 39.0)
assert_rel z[0].re, -3.0, 1e-9, 'z[0].real, (x+3)(x^2+1) = 0'
assert_rel z[0].im, 0.0, 1e-9, 'z[0].imag, (x+3)(x^2+1) = 0'
assert_rel z[1].re, 2.0, 1e-9, 'z[1].real, (x+3)(x^2+1) = 0'
assert_rel z[1].im, -3.0, 1e-9, 'z[1].imag, (x+3)(x^2+1) = 0'
assert_rel z[2].re, 2.0, 1e-9, 'z[2].real, (x+3)(x^2+1) = 0'
assert_rel z[2].im, 3.0, 1e-9, 'z[2].imag, (x+3)(x^2+1) = 0'
z = GSL::Poly.complex_solve_cubic(-51.0, 867.0, -4913.0)
assert_rel z[0].re, 17.0, 1e-9, 'z[0].real, (x-17)^3=0'
assert_rel z[0].im, 0.0, 1e-9, 'z[0].imag, (x-17)^3=0'
assert_rel z[1].re, 17.0, 1e-9, 'z[1].real, (x-17)^3=0'
assert_rel z[1].im, 0.0, 1e-9, 'z[1].imag, (x-17)^3=0'
assert_rel z[2].re, 17.0, 1e-9, 'z[2].real, (x-17)^3=0'
assert_rel z[2].im, 0.0, 1e-9, 'z[2].imag, (x-17)^3=0'
z = GSL::Poly.complex_solve_cubic(-57.0, 1071.0, -6647.0)
assert_rel z[0].re, 17.0, 1e-9, 'z[0].real, (x-17)(x-17)(x-23)=0'
assert_rel z[0].im, 0.0, 1e-9, 'z[0].imag, (x-17)(x-17)(x-23)=0'
assert_rel z[1].re, 17.0, 1e-9, 'z[1].real, (x-17)(x-17)(x-23)=0'
assert_rel z[1].im, 0.0, 1e-9, 'z[1].imag, (x-17)(x-17)(x-23)=0'
assert_rel z[2].re, 23.0, 1e-9, 'z[2].real, (x-17)(x-17)(x-23)=0'
assert_rel z[2].im, 0.0, 1e-9, 'z[2].imag, (x-17)(x-17)(x-23)=0'
z = GSL::Poly.complex_solve_cubic(-11.0, -493.0, +6647.0)
assert_rel z[0].re, -23.0, 1e-9, 'z[0].real, (x+23)(x-17)(x-17)=0'
assert_rel z[0].im, 0.0, 1e-9, 'z[0].imag, (x+23)(x-17)(x-17)=0'
assert_rel z[1].re, 17.0, 1e-9, 'z[1].real, (x+23)(x-17)(x-17)=0'
assert_rel z[1].im, 0.0, 1e-9, 'z[1].imag, (x+23)(x-17)(x-17)=0'
assert_rel z[2].re, 17.0, 1e-9, 'z[2].real, (x+23)(x-17)(x-17)=0'
assert_rel z[2].im, 0.0, 1e-9, 'z[2].imag, (x+23)(x-17)(x-17)=0'
z = GSL::Poly.complex_solve_cubic(-143.0, 5087.0, -50065.0)
assert_rel z[0].re, 17.0, 1e-9, 'z[0].real, (x-17)(x-31)(x-95)=0'
assert_rel z[0].im, 0.0, 1e-9, 'z[0].imag, (x-17)(x-31)(x-95)=0'
assert_rel z[1].re, 31.0, 1e-9, 'z[1].real, (x-17)(x-31)(x-95)=0'
assert_rel z[1].im, 0.0, 1e-9, 'z[1].imag, (x-17)(x-31)(x-95)=0'
assert_rel z[2].re, 95.0, 1e-9, 'z[2].real, (x-17)(x-31)(x-95)=0'
assert_rel z[2].im, 0.0, 1e-9, 'z[2].imag, (x-17)(x-31)(x-95)=0'
a = GSL::Poly.alloc(-120, 274, -225, 85, -15, 1)
w = GSL::Poly::Complex::Workspace.alloc(a.size)
z = GSL::Poly.complex_solve(a, 6, w)
assert_rel z[0].re, 1.0, 1e-9, 'z[0].real, 5th-order polynomial'
assert_rel z[0].im, 0.0, 1e-9, 'z[0].imag, 5th-order polynomial'
assert_rel z[1].re, 2.0, 1e-9, 'z[1].real, 5th-order polynomial'
assert_rel z[1].im, 0.0, 1e-9, 'z[1].imag, 5th-order polynomial'
assert_rel z[2].re, 3.0, 1e-9, 'z[2].real, 5th-order polynomial'
assert_rel z[2].im, 0.0, 1e-9, 'z[2].imag, 5th-order polynomial'
assert_rel z[3].re, 4.0, 1e-9, 'z3.real, 5th-order polynomial'
assert_rel z[3].im, 0.0, 1e-9, 'z3.imag, 5th-order polynomial'
assert_rel z[4].re, 5.0, 1e-9, 'z4.real, 5th-order polynomial'
assert_rel z[4].im, 0.0, 1e-9, 'z4.imag, 5th-order polynomial'
a = GSL::Poly.alloc(1, 0, 0, 0, 1, 0, 0, 0, 1)
w = GSL::Poly::Complex::Workspace.alloc(a.size)
c = 0.5
s = Math.sqrt(3) / 2
z = GSL::Poly.complex_solve(a, w)
assert_rel z[0].re, -s, 1e-9, 'z[0].real, 8th-order polynomial'
assert_rel z[0].im, c, 1e-9, 'z[0].imag, 8th-order polynomial'
assert_rel z[1].re, -s, 1e-9, 'z[1].real, 8th-order polynomial'
assert_rel z[1].im, -c, 1e-9, 'z[1].imag, 8th-order polynomial'
assert_rel z[2].re, -c, 1e-9, 'z[2].real, 8th-order polynomial'
assert_rel z[2].im, s, 1e-9, 'z[2].imag, 8th-order polynomial'
assert_rel z[3].re, -c, 1e-9, 'z3.real, 8th-order polynomial'
assert_rel z[3].im, -s, 1e-9, 'z3.imag, 8th-order polynomial'
assert_rel z[4].re, c, 1e-9, 'z4.real, 8th-order polynomial'
assert_rel z[4].im, s, 1e-9, 'z4.imag, 8th-order polynomial'
assert_rel z[5].re, c, 1e-9, 'z5.real, 8th-order polynomial'
assert_rel z[5].im, -s, 1e-9, 'z5.imag, 8th-order polynomial'
assert_rel z[6].re, s, 1e-9, 'z6.real, 8th-order polynomial'
assert_rel z[6].im, c, 1e-9, 'z6.imag, 8th-order polynomial'
assert_rel z[7].re, s, 1e-9, 'z7.real, 8th-order polynomial'
assert_rel z[7].im, -c, 1e-9, 'z7.imag, 8th-order polynomial'
xa = GSL::Poly.alloc(0.16, 0.97, 1.94, 2.74, 3.58, 3.73, 4.70)
ya = GSL::Poly.alloc(0.73, 1.11, 1.49, 1.84, 2.30, 2.41, 3.07)
dd_expected = GSL::Vector.alloc(7.30000000000000e-01,
4.69135802469136e-01,
-4.34737219941284e-02,
2.68681098870099e-02,
-3.22937056934996e-03,
6.12763259971375e-03,
-6.45402453527083e-03)
dd = GSL::Poly.dd_init(xa, ya)
7.times { |i|
assert_rel dd[i], dd_expected[i], 1e-10, "divided difference dd[#{i}]"
}
7.times { |i|
y = dd.eval(xa, xa[i])
assert_rel y, ya[i], 1e-10, "divided difference y[#{i}]"
}
coeff = dd.taylor(1.5, xa)
7.times { |i|
y = coeff.eval(xa[i] - 1.5)
assert_rel y, ya[i], 1e-10, "taylor expansion about 1.5 y[#{i}]"
}
# Added GSL-1.12.90 (gsl-1.13)
# gsl_poly_eval_derivs()
return unless GSL::Poly.method_defined?(:eval_derivs)
c = GSL::Vector.alloc([1.0, -2.0, 3.0, -4.0, 5.0, -6.0])
x = -0.5
dc = GSL::Poly.eval_derivs(c, x)
assert_rel dc[0], c[0] + c[1] * x + c[2] * x * x + c[3] * x * x * x + c[4] * x * x * x * x + c[5] * x * x * x * x * x , EPS, 'eval_derivs({+1, -2, +3, -4, +5, -6}, 3.75)'
assert_rel dc[1], c[1] + 2.0 * c[2] * x + 3.0 * c[3] * x * x + 4.0 * c[4] * x * x * x + 5.0 * c[5] * x * x * x * x , EPS, 'eval_derivs({+1, -2, +3, -4, +5, -6} deriv 1, -12.375)'
assert_rel dc[2], 2.0 * c[2] + 3.0 * 2.0 * c[3] * x + 4.0 * 3.0 * c[4] * x * x + 5.0 * 4.0 * c[5] * x * x * x , EPS, 'eval_derivs({+1, -2, +3, -4, +5, -6} deriv 2, +48.0)'
assert_rel dc[3], 3.0 * 2.0 * c[3] + 4.0 * 3.0 * 2.0 * c[4] * x + 5.0 * 4.0 * 3.0 * c[5] * x * x , EPS, 'eval_derivs({+1, -2, +3, -4, +5, -6} deriv 3, -174.0)'
assert_rel dc[4], 4.0 * 3.0 * 2.0 * c[4] + 5.0 * 4.0 * 3.0 * 2.0 * c[5] * x, EPS, 'eval_derivs({+1, -2, +3, -4, +5, -6} deriv 4, +480.0)'
assert_rel dc[5], 5.0 * 4.0 * 3.0 * 2.0 * c[5] , EPS, 'eval_derivs({+1, -2, +3, -4, +5, -6} deriv 5, -720.0)'
# Test Poly::fit and Poly::wfit
x = GSL::Vector[0, 2, 2]
y = GSL::Vector[0, 1, -1]
coef, cov, chisq, status = GSL::Poly.fit(x, y, 1)
assert_rel coef[0], 0.0, 1e-9, 'y intercept == 0'
assert_rel coef[1], 0.0, 1e-9, 'slope == 0'
assert_rel chisq, 2.0, 1e-9, 'chisq == 2'
w = GSL::Vector[1, 1, 0]
coef, cov, chisq, status = GSL::Poly.wfit(x, w, y, 1)
assert_rel coef[0], 0.0, 1e-9, 'y intercept == 0'
assert_rel coef[1], 0.5, 1e-9, 'slope == 0.5'
assert_rel chisq, 0.0, 1e-9, 'chisq == 0'
end
def test_special
hermit = [
GSL::Poly::Int[1],
GSL::Poly::Int[0, 2],
GSL::Poly::Int[-2, 0, 4],
GSL::Poly::Int[0, -12, 0, 8],
GSL::Poly::Int[12, 0, -48, 0, 16],
GSL::Poly::Int[0, 120, 0, -160, 0, 32],
GSL::Poly::Int[-120, 0, 720, 0, -480, 0, 64]
]
hermit[0][0] = 1
6.times { |i|
hn = GSL::Poly.hermite(i)
assert_equal hermit[i], hn, "Hermite polynomial, n = #{i}"
}
laguerre = [
GSL::Poly::Int[1],
GSL::Poly::Int[1, -1],
GSL::Poly::Int[2, -4, 1],
GSL::Poly::Int[6, -18, 9, -1],
GSL::Poly::Int[24, -96, 72, -16, 1],
GSL::Poly::Int[120, -600, 600, -200, 25, -1],
GSL::Poly::Int[720, -4320, 5400, -2400, 450, -36, 1]
]
laguerre[0][0] = 1
7.times { |i|
hn = GSL::Poly.laguerre(i)
assert_equal laguerre[i], hn, "Laguerre polynomial, n = #{i}"
}
cheb = [
GSL::Poly::Int[1],
GSL::Poly::Int[0, 1],
GSL::Poly::Int[-1, 0, 2],
GSL::Poly::Int[0, -3, 0, 4],
GSL::Poly::Int[1, 0, -8, 0, 8],
GSL::Poly::Int[0, 5, 0, -20, 0, 16],
GSL::Poly::Int[-1, 0, 18, 0, -48, 0, 32]
]
cheb[0][0] = 1
7.times { |i|
hn = GSL::Poly.cheb(i)
assert_equal cheb[i], hn, "Chebyshev polynomial, n = #{i}"
}
cheb_ii = [
GSL::Poly::Int[1],
GSL::Poly::Int[0, 2],
GSL::Poly::Int[-1, 0, 4],
GSL::Poly::Int[0, -4, 0, 8],
GSL::Poly::Int[1, 0, -12, 0, 16],
GSL::Poly::Int[0, 6, 0, -32, 0, 32],
GSL::Poly::Int[-1, 0, 24, 0, -80, 0, 64]
]
cheb_ii[0][0] = 1
7.times { |i|
hn = GSL::Poly.cheb_II(i)
assert_equal cheb_ii[i], hn, "Chebyshev II polynomial, n = #{i}"
}
end
end
|