File: tensor_test.rb

package info (click to toggle)
ruby-gsl 2.1.0.3%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 5,604 kB
  • sloc: ansic: 62,050; ruby: 15,845; sh: 19; makefile: 10
file content (396 lines) | stat: -rw-r--r-- 10,966 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
require 'test_helper'

class TensorTest < GSL::TestCase

  RANK = 3
  DIMENSION = 5

  def test_tensor
    return unless GSL.const_defined?(:Tensor)

    t = GSL::Tensor.alloc(RANK, DIMENSION)

    assert t.rank == RANK, "#{t.class}.alloc returns valid rank"
    assert t.dimension == DIMENSION, "#{t.class}_alloc returns valid dimension"

    counter = 0
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          counter += 1
          t.set(i, j, k, counter)
    #      t[i, j, k] = counter
        end
      end
    end

    status = 0
    counter = 0
    data = t.data    # GSL::Vector::View
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          counter += 1
          if data[DIMENSION * DIMENSION * i + DIMENSION * j + k] != counter
            status += 1
          end
        end
      end
    end

    assert status.zero?, "#{t.class}#set writes into array"

    status = 0
    counter = 0
    data = t.data
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          counter += 1
    #      if t.get(i, j, k) != counter
          if t[i, j, k] != counter
            status += 1
          end
        end
      end
    end

    assert status.zero?, "#{t.class}#get reads from array"

    t = GSL::Tensor.calloc(RANK, DIMENSION)

    counter = 0
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          counter += 1
          t.set(i, j, k, counter)
        end
      end
    end

    exp_max = t[0, 0, 0]
    exp_min = t[0, 0, 0]
    exp_imax = exp_jmax = exp_kmax = 0
    exp_imin = exp_jmin = exp_kmin = 0

    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          value = t[i, j, k]
          if value > exp_max
            exp_max = value
            exp_imax = i; exp_jmax = j; exp_kmax = k
          end
          if value < exp_min
            exp_min = t[i, j, k]
            exp_imin = i; exp_jmin = j; exp_kmin = k
          end
        end
      end
    end

    max = t.max
    assert max == exp_max, "#{t.class}#max returns correct maximum value"
    min = t.min
    assert min == exp_min, "#{t.class}#min returns correct minimum value"

    min, max = t.minmax
    assert max == exp_max, "#{t.class}#minmax returns correct maximum value"
    assert min == exp_min, "#{t.class}#minmax returns correct minimum value"

    imax = t.max_index
    status = 0
    if imax[0] != exp_imax; status += 1; end
    if imax[1] != exp_jmax; status += 1; end
    if imax[2] != exp_kmax; status += 1; end
    assert status.zero?, "#{t.class}#max_index returns correct maximum indices"

    imin = t.min_index
    status = 0
    if imin[0] != exp_imin; status += 1; end
    if imin[1] != exp_jmin; status += 1; end
    if imin[2] != exp_kmin; status += 1; end
    assert status.zero?, "#{t.class}#min_index returns correct minimum indices"


    imin, imax = t.minmax_index
    status = 0
    if imin[0] != exp_imin; status += 1; end
    if imin[1] != exp_jmin; status += 1; end
    if imin[2] != exp_kmin; status += 1; end
    if imax[0] != exp_imax; status += 1; end
    if imax[1] != exp_jmax; status += 1; end
    if imax[2] != exp_kmax; status += 1; end
    assert status.zero?, "#{t.class}#minmax_index returns correct indices"

    ##### Operations
    a = GSL::Tensor.new(RANK, DIMENSION)
    b = GSL::Tensor.new(RANK, DIMENSION)
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          a[i, j, k] = 3 + i + 5 * j + 2 * k
          b[i, j, k] = 3 + 2 * i + 4 * j + k
        end
      end
    end

    # Addition
    c = a + b
    #c = a.add(b)
    status = 0
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          r = c[i, j, k]
          x = a[i, j, k]
          y = b[i, j, k]
          z = x + y
          status += 1 if r != z
        end
      end
    end
    assert status.zero?, "#{t.class}#add tensor addition"

    # Subtraction
    c = a - b
    # c = a.sub(b)
    status = 0
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          r = c[i, j, k]
          x = a[i, j, k]
          y = b[i, j, k]
          z = x - y
          status += 1 if r != z
        end
      end
    end
    assert status.zero?, "#{t.class}#sub tensor subtraction"

    # Element multiplication
     c = a.mul_elements(b)
    status = 0
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          r = c[i, j, k]
          x = a[i, j, k]
          y = b[i, j, k]
          z = x * y
          status += 1 if r != z
        end
      end
    end
    assert status.zero?, "#{t.class}#mul_elements element multiplication"

    # Element division
    c = a.div_elements(b)
    status = 0
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          r = c[i, j, k]
          x = a[i, j, k]
          y = b[i, j, k]
          z = x / y
          if (r - z).abs > 2 * GSL::FLT_EPSILON * z.abs; status += 1; end
        end
      end
    end
    assert status.zero?, "#{t.class}#div_elements element division"

    ### Tensor product
    c = a * b
    status = 0
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          for l in 0...DIMENSION do
            for m in 0...DIMENSION do
              for n in 0...DIMENSION do
                r = c[i, j, k, l, m, n]
                x = a[i, j, k]
                y = b[l, m, n]
                z = x * y
                if r != z; status += 1; end
              end
            end
          end
        end
      end
    end
    assert status.zero?, "#{t.class}#product tensorial product"

    ### Index contraction
    tt = a.contract(0, 1)
    assert tt.rank == RANK - 2, "#{t.class}.contract returns valid rank"
    assert tt.dimension == DIMENSION, "#{t.class}_contract returns valid dimension"

    ### Swap indices
    a_102 = a.swap_indices(0, 1)
    a_210 = a.swap_indices(0, 2)
    a_021 = a.swap_indices(1, 2)
    status = 0
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          x = a[i, j, k]
          x_102 = a_102[j, i, k]
          x_210 = a_210[k, j, i]
          x_021 = a_021[i, k, j]
          if x != x_102 or x != x_210 or x != x_021; status += 1; end
        end
      end
    end
    assert status.zero?, "#{t.class}#swap_indices swap indices"

    ### Test text IO
    file = 'tensor_test.txt'

    t = GSL::Tensor.alloc(RANK, DIMENSION)
    counter = 0
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          counter += 1
          t[i, j, k] = counter
        end
      end
    end

    t.fprintf(file, '%g')
    tt = GSL::Tensor.alloc(RANK, DIMENSION)
    status = 0
    tt.fscanf(file)
    counter = 0
    data = tt.data
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          counter += 1
          if data[DIMENSION * DIMENSION * i + DIMENSION * j + k] != counter
            status += 1
          end
        end
      end
    end
    assert status.zero?, "#{t.class}#fprintf and fscanf"
    File.delete(file)

    ### Test binary IO
    file = 'tensor_test.dat'
    t.fwrite(file)
    tt = GSL::Tensor.alloc(RANK, DIMENSION)
    status = 0
    tt.fread(file)
    counter = 0
    data = tt.data
    for i in 0...DIMENSION do
      for j in 0...DIMENSION do
        for k in 0...DIMENSION do
          counter += 1
          if data[DIMENSION * DIMENSION * i + DIMENSION * j + k] != counter
            status += 1
          end
        end
      end
    end
    assert status.zero?, "#{t.class}#fwrite and fread"
    File.delete(file)

    ### Trap
    i = j = k = 0
    t = GSL::Tensor.calloc(RANK, DIMENSION)
    assert_nothing_raised("#{t.class}#set traps 1st index above upper bound") {
      t[DIMENSION + 1, 0, 0] = 1.2
    }

    assert_nothing_raised("#{t.class}#set traps 2nd index above upper bound") {
      t[0, DIMENSION + 1, 0] = 1.2
    }

    assert_nothing_raised("#{t.class}#set traps 3rd index above upper bound") {
      t[0, 0, DIMENSION + 1] = 1.2
    }

    assert_nothing_raised("#{t.class}#set traps 2nd index at upper bound") {
      t[0, DIMENSION, 0] = 1.2
    }

    assert_nothing_raised("#{t.class}#set traps 2nd index below lower bound") {
      t[0, i - 1, 0] = 1.2
    }

    assert_nothing_raised("#{t.class}#get traps 1st index above upper bound") {
      t[DIMENSION + 1, 0, 0]
    }

    assert_nothing_raised("#{t.class}#get traps 2nd index above upper bound") {
      t[0, DIMENSION + 1, 0]
    }

    assert_nothing_raised("#{t.class}#get traps 3rd index above upper bound") {
      t[0, 0, DIMENSION + 1]
    }

    assert_nothing_raised("#{t.class}#get traps 2nd index at upper bound") {
      t[0, DIMENSION, 0]
    }

    assert_nothing_raised("#{t.class}#get traps 2nd index below lower bound") {
      t[0, i - 1, 0]
    }

    #####
    # Vector and Tensor, subtensors
    #v = GSL::Vector.new(0...125)
    v = GSL::Vector.indgen(125)
    t = v.to_tensor(3, 5)
    assert t.rank == RANK, "#{v.class}.to_tensor(#{RANK}, #{DIMENSION}) returns valid rank"
    assert t.dimension == DIMENSION, "#{v.class}.to_tensor(#{RANK}, #{DIMENSION}) returns valid dimension"

    m0_exp = GSL::Matrix[0...25, 5, 5]
    m1_exp = GSL::Matrix[25...50, 5, 5]
    m2_exp = GSL::Matrix[50...75, 5, 5]
    m3_exp = GSL::Matrix[75...100, 5, 5]
    m4_exp = GSL::Matrix[100...125, 5, 5]

    # Create tensors of rank 2
    t0 = t.subtensor(0)
    t1 = t[1]
    t2 = t.subtensor(2)
    t3 = t[3]
    t4 = t.subtensor(4)

    # 2-tensors can be compared directly with matrices
    assert t0 == m0_exp, "#{t.class}#subtensor(0) returns valid tensor"
    assert t1 == m1_exp, "#{t.class}#subtensor(1) returns valid tensor"
    assert t2 == m2_exp, "#{t.class}#subtensor(2) returns valid tensor"
    assert t3 == m3_exp, "#{t.class}#subtensor(3) returns valid tensor"
    assert t4 == m4_exp, "#{t.class}#subtensor(4) returns valid tensor"

    v0_exp = GSL::Vector[100...105]
    v1_exp = GSL::Vector[105...110]
    v2_exp = GSL::Vector[110...115]
    v3_exp = GSL::Vector[115...120]
    v4_exp = GSL::Vector[120...125]

    # Create tensors of rank1
    v0 = t[4, 0]
    v1 = t[4][1]
    v2 = t.subtensor(4, 2)
    v3 = t4[3]
    v4 = t4.subtensor(4)

    # 1-tensors can be compared directly with vectors
    assert v0 == v0_exp, "#{t.class}#subtensor(4,0) returns valid tensor"
    assert v1 == v1_exp, "#{t.class}#subtensor(4,1) returns valid tensor"
    assert v2 == v2_exp, "#{t.class}#subtensor(4,2) returns valid tensor"
    assert v3 == v3_exp, "#{t.class}#subtensor(4,3) returns valid tensor"
    assert v4 == v4_exp, "#{t.class}#subtensor(4,4) returns valid tensor"
  end

end