File: sorted_set.rb

package info (click to toggle)
ruby-hamster 3.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,932 kB
  • sloc: ruby: 16,915; makefile: 4
file content (1459 lines) | stat: -rw-r--r-- 44,913 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
require "hamster/immutable"
require "hamster/enumerable"

module Hamster

  # A `SortedSet` is a collection of ordered values with no duplicates. Unlike a
  # {Vector}, in which items can appear in any arbitrary order, a `SortedSet` always
  # keeps items either in their natural order, or in an order defined by a comparator
  # block which is provided at initialization time.
  #
  # `SortedSet` uses `#<=>` (or its comparator block) to determine which items are
  # equivalent. If the comparator indicates that an existing item and a new item are
  # equal, any attempt to insert the new item will have no effect.
  #
  # This means that *all* the items inserted into any one `SortedSet` must all be
  # comparable. For example, you cannot put `String`s and `Integer`s in the same
  # `SortedSet`. This is unlike {Set}, which can store items of any type, as long
  # as they all support `#hash` and `#eql?`.
  #
  # A `SortedSet` can be created in either of the following ways:
  #
  #     Hamster::SortedSet.new([1, 2, 3]) # any Enumerable can be used to initialize
  #     Hamster::SortedSet['A', 'B', 'C', 'D']
  #
  # Or if you want to use a custom ordering:
  #
  #     Hamster::SortedSet.new([1,2,3]) { |a, b| -a <=> -b }
  #     Hamster::SortedSet.new([1, 2, 3]) { |num| -num }
  #
  # `SortedSet` can use a 2-parameter block which returns 0, 1, or -1
  # as a comparator (like `Array#sort`), *or* use a 1-parameter block to derive sort
  # keys (like `Array#sort_by`) which will be compared using `#<=>`.
  #
  # Like all Hamster collections, `SortedSet`s are immutable. Any operation which you
  # might expect to "modify" a `SortedSet` will actually return a new collection and
  # leave the existing one unchanged.
  #
  # `SortedSet` supports the same basic set-theoretic operations as {Set}, including
  # {#union}, {#intersection}, {#difference}, and {#exclusion}, as well as {#subset?},
  # {#superset?}, and so on. Unlike {Set}, it does not define comparison operators like
  # `#>` or `#<` as aliases for the superset/subset predicates. Instead, these comparison
  # operators do a item-by-item comparison between the `SortedSet` and another sequential
  # collection. (See `Array#<=>` for details.)
  #
  # Additionally, since `SortedSet`s are ordered, they also support indexed retrieval
  # of items using {#at} or {#[]}. Like {Vector},
  # negative indices count back from the end of the `SortedSet`.
  #
  # Getting the {#max} or {#min} item from a `SortedSet`, as defined by its comparator,
  # is a constant time operation.
  #
  class SortedSet
    include Immutable
    include Enumerable

    class << self
      # Create a new `SortedSet` populated with the given items. This method does not
      # accept a comparator block.
      #
      # @return [SortedSet]
      def [](*items)
        new(items)
      end

      # Return an empty `SortedSet`. If used on a subclass, returns an empty instance
      # of that class.
      #
      # @return [SortedSet]
      def empty
        @empty ||= self.alloc(PlainAVLNode::EmptyNode)
      end

      # "Raw" allocation of a new `SortedSet`. Used internally to create a new
      # instance quickly after obtaining a modified binary tree.
      #
      # @return [Set]
      # @private
      def alloc(node)
        result = allocate
        result.instance_variable_set(:@node, node)
        result
      end
    end

    def initialize(items=[], &block)
      items = items.to_a
      if block
        if block.arity == 1 || block.arity == -1 || block.arity == -2
          comparator = lambda { |a,b| block.call(a) <=> block.call(b) }
          items = items.sort_by(&block)
        else
          comparator = block
          items = items.sort(&block)
        end
        @node = AVLNode.from_items(items, comparator)
      else
        @node = PlainAVLNode.from_items(items.sort)
      end
    end

    # Return `true` if this `SortedSet` contains no items.
    #
    # @return [Boolean]
    def empty?
      @node.empty?
    end

    # Return the number of items in this `SortedSet`.
    #
    # @example
    #   Hamster::SortedSet["A", "B", "C"].size  # => 3
    #
    # @return [Integer]
    def size
      @node.size
    end
    alias :length :size

    # Return a new `SortedSet` with `item` added. If `item` is already in the set,
    # return `self`.
    #
    # @example
    #   Hamster::SortedSet["Dog", "Lion"].add("Elephant")
    #   # => Hamster::SortedSet["Dog", "Elephant", "Lion"]
    #
    # @param item [Object] The object to add
    # @return [SortedSet]
    def add(item)
      catch :present do
        node = @node.insert(item)
        return self.class.alloc(node)
      end
      self
    end
    alias :<< :add

    # If `item` is not a member of this `SortedSet`, return a new `SortedSet` with
    # `item` added. Otherwise, return `false`.
    #
    # @example
    #   Hamster::SortedSet["Dog", "Lion"].add?("Elephant")
    #   # => Hamster::SortedSet["Dog", "Elephant", "Lion"]
    #   Hamster::SortedSet["Dog", "Lion"].add?("Lion")
    #   # => false
    #
    # @param item [Object] The object to add
    # @return [SortedSet, false]
    def add?(item)
      !include?(item) && add(item)
    end

    # Return a new `SortedSet` with `item` removed. If `item` is not a member of the set,
    # return `self`.
    #
    # @example
    #   Hamster::SortedSet["A", "B", "C"].delete("B")
    #   # => Hamster::SortedSet["A", "C"]
    #
    # @param item [Object] The object to remove
    # @return [SortedSet]
    def delete(item)
      catch :not_present do
        node = @node.delete(item)
        if node.empty? && node.natural_order?
          return self.class.empty
        else
          return self.class.alloc(node)
        end
      end
      self
    end

    # If `item` is a member of this `SortedSet`, return a new `SortedSet` with
    # `item` removed. Otherwise, return `false`.
    #
    # @example
    #   Hamster::SortedSet["A", "B", "C"].delete?("B")
    #   # => Hamster::SortedSet["A", "C"]
    #   Hamster::SortedSet["A", "B", "C"].delete?("Z")
    #   # => false
    #
    # @param item [Object] The object to remove
    # @return [SortedSet, false]
    def delete?(item)
      include?(item) && delete(item)
    end

    # Return a new `SortedSet` with the item at `index` removed. If the given `index`
    # does not exist (if it is too high or too low), return `self`.
    #
    # @example
    #   Hamster::SortedSet["A", "B", "C", "D"].delete_at(2)
    #   # => Hamster::SortedSet["A", "B", "D"]
    #
    # @param index [Integer] The index to remove
    # @return [SortedSet]
    def delete_at(index)
      (item = at(index)) ? delete(item) : self
    end

    # Retrieve the item at `index`. If there is none (either the provided index
    # is too high or too low), return `nil`.
    #
    # @example
    #   s = Hamster::SortedSet["A", "B", "C", "D", "E", "F"]
    #   s.at(2)   # => "C"
    #   s.at(-2)  # => "E"
    #   s.at(6)   # => nil
    #
    # @param index [Integer] The index to retrieve
    # @return [Object]
    def at(index)
      index += @node.size if index < 0
      return nil if index >= @node.size || index < 0
      @node.at(index)
    end

    # Retrieve the value at `index` with optional default.
    #
    # @overload fetch(index)
    #   Retrieve the value at the given index, or raise an `IndexError` if not
    #   found.
    #
    #   @param index [Integer] The index to look up
    #   @raise [IndexError] if index does not exist
    #   @example
    #     v = Hamster::SortedSet["A", "B", "C", "D"]
    #     v.fetch(2)       # => "C"
    #     v.fetch(-1)      # => "D"
    #     v.fetch(4)       # => IndexError: index 4 outside of vector bounds
    #
    # @overload fetch(index) { |index| ... }
    #   Retrieve the value at the given index, or return the result of yielding
    #   the block if not found.
    #
    #   @yield Once if the index is not found.
    #   @yieldparam [Integer] index The index which does not exist
    #   @yieldreturn [Object] Default value to return
    #   @param index [Integer] The index to look up
    #   @example
    #     v = Hamster::SortedSet["A", "B", "C", "D"]
    #     v.fetch(2) { |i| i * i }   # => "C"
    #     v.fetch(4) { |i| i * i }   # => 16
    #
    # @overload fetch(index, default)
    #   Retrieve the value at the given index, or return the provided `default`
    #   value if not found.
    #
    #   @param index [Integer] The index to look up
    #   @param default [Object] Object to return if the key is not found
    #   @example
    #     v = Hamster::SortedSet["A", "B", "C", "D"]
    #     v.fetch(2, "Z")  # => "C"
    #     v.fetch(4, "Z")  # => "Z"
    #
    # @return [Object]
    def fetch(index, default = (missing_default = true))
      if index >= -@node.size && index < @node.size
        at(index)
      elsif block_given?
        yield(index)
      elsif !missing_default
        default
      else
        raise IndexError, "index #{index} outside of sorted set bounds"
      end
    end

    # Return specific objects from the `Vector`. All overloads return `nil` if
    # the starting index is out of range.
    #
    # @overload set.slice(index)
    #   Returns a single object at the given `index`. If `index` is negative,
    #   count backwards from the end.
    #
    #   @param index [Integer] The index to retrieve. May be negative.
    #   @return [Object]
    #   @example
    #     s = Hamster::SortedSet["A", "B", "C", "D", "E", "F"]
    #     s[2]  # => "C"
    #     s[-1] # => "F"
    #     s[6]  # => nil
    #
    # @overload set.slice(index, length)
    #   Return a subset starting at `index` and continuing for `length`
    #   elements or until the end of the `SortedSet`, whichever occurs first.
    #
    #   @param start [Integer] The index to start retrieving items from. May be
    #                          negative.
    #   @param length [Integer] The number of items to retrieve.
    #   @return [SortedSet]
    #   @example
    #     s = Hamster::SortedSet["A", "B", "C", "D", "E", "F"]
    #     s[2, 3]  # => Hamster::SortedSet["C", "D", "E"]
    #     s[-2, 3] # => Hamster::SortedSet["E", "F"]
    #     s[20, 1] # => nil
    #
    # @overload set.slice(index..end)
    #   Return a subset starting at `index` and continuing to index
    #   `end` or the end of the `SortedSet`, whichever occurs first.
    #
    #   @param range [Range] The range of indices to retrieve.
    #   @return [SortedSet]
    #   @example
    #     s = Hamster::SortedSet["A", "B", "C", "D", "E", "F"]
    #     s[2..3]    # => Hamster::SortedSet["C", "D"]
    #     s[-2..100] # => Hamster::SortedSet["E", "F"]
    #     s[20..21]  # => nil
    def slice(arg, length = (missing_length = true))
      if missing_length
        if arg.is_a?(Range)
          from, to = arg.begin, arg.end
          from += @node.size if from < 0
          to   += @node.size if to < 0
          to   += 1     if !arg.exclude_end?
          length = to - from
          length = 0 if length < 0
          subsequence(from, length)
        else
          at(arg)
        end
      else
        arg += @node.size if arg < 0
        subsequence(arg, length)
      end
    end
    alias :[] :slice

    # Return a new `SortedSet` with only the elements at the given `indices`.
    # If any of the `indices` do not exist, they will be skipped.
    #
    # @example
    #   s = Hamster::SortedSet["A", "B", "C", "D", "E", "F"]
    #   s.values_at(2, 4, 5)   # => Hamster::SortedSet["C", "E", "F"]
    #
    # @param indices [Array] The indices to retrieve and gather into a new `SortedSet`
    # @return [SortedSet]
    def values_at(*indices)
      indices.select! { |i| i >= -@node.size && i < @node.size }
      self.class.new(indices.map! { |i| at(i) })
    end

    # Call the given block once for each item in the set, passing each
    # item from first to last successively to the block. If no block is
    # provided, returns an `Enumerator`.
    #
    # @example
    #   Hamster::SortedSet["A", "B", "C"].each { |e| puts "Element: #{e}" }
    #
    #   Element: A
    #   Element: B
    #   Element: C
    #   # => Hamster::SortedSet["A", "B", "C"]
    #
    # @yield [item]
    # @return [self, Enumerator]
    def each(&block)
      return @node.to_enum if not block_given?
      @node.each(&block)
      self
    end

    # Call the given block once for each item in the set, passing each
    # item starting from the last, and counting back to the first, successively to
    # the block.
    #
    # @example
    #   Hamster::SortedSet["A", "B", "C"].reverse_each { |e| puts "Element: #{e}" }
    #
    #   Element: C
    #   Element: B
    #   Element: A
    #   # => Hamster::SortedSet["A", "B", "C"]
    #
    # @return [self]
    def reverse_each(&block)
      return @node.enum_for(:reverse_each) if not block_given?
      @node.reverse_each(&block)
      self
    end

    # Return the "lowest" element in this set, as determined by its sort order.
    # Or, if a block is provided, use the block as a comparator to find the
    # "lowest" element. (See `Enumerable#min`.)
    #
    # @example
    #   Hamster::SortedSet["A", "B", "C"].min  # => "A"
    #
    # @return [Object]
    # @yield [a, b] Any number of times with different pairs of elements.
    def min
      block_given? ? super : @node.min
    end

    # Return the "lowest" element in this set, as determined by its sort order.
    # @return [Object]
    def first
      @node.min
    end

    # Return the "highest" element in this set, as determined by its sort order.
    # Or, if a block is provided, use the block as a comparator to find the
    # "highest" element. (See `Enumerable#max`.)
    #
    # @example
    #   Hamster::SortedSet["A", "B", "C"].max  # => "C"
    #
    # @yield [a, b] Any number of times with different pairs of elements.
    # @return [Object]
    def max
      block_given? ? super : @node.max
    end

    # Return the "highest" element in this set, as determined by its sort order.
    # @return [Object]
    def last
      @node.max
    end

    # Return a new `SortedSet` containing all elements for which the given block returns
    # true.
    #
    # @example
    #   Hamster::SortedSet["Bird", "Cow", "Elephant"].select { |e| e.size >= 4 }
    #   # => Hamster::SortedSet["Bird", "Elephant"]
    #
    # @return [SortedSet]
    # @yield [item] Once for each item.
    def select
      return enum_for(:select) unless block_given?
      items_to_delete = []
      each { |item| items_to_delete << item unless yield(item) }
      derive_new_sorted_set(@node.bulk_delete(items_to_delete))
    end
    alias :find_all :select
    alias :keep_if  :select

    # Invoke the given block once for each item in the set, and return a new
    # `SortedSet` containing the values returned by the block. If no block is
    # given, returns an `Enumerator`.
    #
    # @example
    #   Hamster::SortedSet[1, 2, 3].map { |e| -(e * e) }
    #   # => Hamster::SortedSet[-9, -4, -1]
    #
    # @return [SortedSet, Enumerator]
    # @yield [item] Once for each item.
    def map
      return enum_for(:map) if not block_given?
      return self if empty?
      self.class.alloc(@node.from_items(super))
    end
    alias :collect :map

    # Return `true` if the given item is present in this `SortedSet`. More precisely,
    # return `true` if an object which compares as "equal" using this set's
    # comparator is present.
    #
    # @example
    #   Hamster::SortedSet["A", "B", "C"].include?("B")  # => true
    #
    # @param item [Object] The object to check for
    # @return [Boolean]
    def include?(item)
      @node.include?(item)
    end
    alias :member? :include?

    # Return a new `SortedSet` with the same items, but a sort order determined
    # by the given block.
    #
    # @example
    #   Hamster::SortedSet["Bird", "Cow", "Elephant"].sort { |a, b| a.size <=> b.size }
    #   # => Hamster::SortedSet["Cow", "Bird", "Elephant"]
    #   Hamster::SortedSet["Bird", "Cow", "Elephant"].sort_by { |e| e.size }
    #   # => Hamster::SortedSet["Cow", "Bird", "Elephant"]
    #
    # @return [SortedSet]
    def sort(&block)
      if block
        self.class.new(self.to_a, &block)
      else
        self.class.new(self.to_a.sort)
      end      
    end
    alias :sort_by :sort

    # Find the index of a given object or an element that satisfies the given
    # block.
    #
    # @overload find_index(obj)
    #   Return the index of the first object in this set which is equal to
    #   `obj`. Rather than using `#==`, we use `#<=>` (or our comparator block)
    #   for comparisons. This means we can find the index in `O(log N)` time,
    #   rather than `O(N)`.
    #   @param obj [Object] The object to search for
    #   @example
    #     s = Hamster::SortedSet[2, 4, 6, 8, 10]
    #     s.find_index(8)  # => 3
    # @overload find_index
    #   Return the index of the first object in this sorted set for which the
    #   block returns to true. This takes `O(N)` time.
    #   @yield [element] An element in the sorted set
    #   @yieldreturn [Boolean] True if this is element matches
    #   @example
    #     s = Hamster::SortedSet[2, 4, 6, 8, 10]
    #     s.find_index { |e| e > 7 }  # => 3
    #
    # @return [Integer] The index of the object, or `nil` if not found.
    def find_index(obj = (missing_obj = true), &block)
      if !missing_obj
        # Enumerable provides a default implementation, but this is more efficient
        node = @node
        index = node.left.size
        while !node.empty?
          direction = node.direction(obj)
          if direction > 0
            node = node.right
            index += (node.left.size + 1)
          elsif direction < 0
            node = node.left
            index -= (node.right.size + 1)
          else
            return index
          end
        end
        nil
      else
        super(&block)
      end
    end
    alias :index :find_index

    # Drop the first `n` elements and return the rest in a new `SortedSet`.
    #
    # @example
    #   Hamster::SortedSet["A", "B", "C", "D", "E", "F"].drop(2)
    #   # => Hamster::SortedSet["C", "D", "E", "F"]
    #
    # @param n [Integer] The number of elements to remove
    # @return [SortedSet]
    def drop(n)
      derive_new_sorted_set(@node.drop(n))
    end

    # Return only the first `n` elements in a new `SortedSet`.
    #
    # @example
    #   Hamster::SortedSet["A", "B", "C", "D", "E", "F"].take(4)
    #   # => Hamster::SortedSet["A", "B", "C", "D"]
    #
    # @param n [Integer] The number of elements to retain
    # @return [SortedSet]
    def take(n)
      derive_new_sorted_set(@node.take(n))
    end

    # Drop elements up to, but not including, the first element for which the
    # block returns `nil` or `false`. Gather the remaining elements into a new
    # `SortedSet`. If no block is given, an `Enumerator` is returned instead.
    #
    # @example
    #   Hamster::SortedSet[2, 4, 6, 7, 8, 9].drop_while { |e| e.even? }
    #   # => Hamster::SortedSet[7, 8, 9]
    #
    # @yield [item]
    # @return [SortedSet, Enumerator]
    def drop_while
      return enum_for(:drop_while) if not block_given?
      n = 0
      each do |item|
        break unless yield item
        n += 1
      end
      drop(n)
    end

    # Gather elements up to, but not including, the first element for which the
    # block returns `nil` or `false`, and return them in a new `SortedSet`. If no block
    # is given, an `Enumerator` is returned instead.
    #
    # @example
    #   Hamster::SortedSet[2, 4, 6, 7, 8, 9].take_while { |e| e.even? }
    #   # => Hamster::SortedSet[2, 4, 6]
    #
    # @return [SortedSet, Enumerator]
    # @yield [item]
    def take_while
      return enum_for(:take_while) if not block_given?
      n = 0
      each do |item|
        break unless yield item
        n += 1
      end
      take(n)
    end

    # Return a new `SortedSet` which contains all the members of both this set and `other`.
    # `other` can be any `Enumerable` object.
    #
    # @example
    #   Hamster::SortedSet[1, 2] | Hamster::SortedSet[2, 3]
    #   # => Hamster::SortedSet[1, 2, 3]
    #
    # @param other [Enumerable] The collection to merge with
    # @return [SortedSet]
    def union(other)
      self.class.alloc(@node.bulk_insert(other))
    end
    alias :| :union
    alias :+ :union
    alias :merge :union

    # Return a new `SortedSet` which contains all the items which are members of both
    # this set and `other`. `other` can be any `Enumerable` object.
    #
    # @example
    #   Hamster::SortedSet[1, 2] & Hamster::SortedSet[2, 3]
    #   # => Hamster::SortedSet[2]
    #
    # @param other [Enumerable] The collection to intersect with
    # @return [SortedSet]
    def intersection(other)
      self.class.alloc(@node.keep_only(other))
    end
    alias :& :intersection

    # Return a new `SortedSet` with all the items in `other` removed. `other` can be
    # any `Enumerable` object.
    #
    # @example
    #   Hamster::SortedSet[1, 2] - Hamster::SortedSet[2, 3]
    #   # => Hamster::SortedSet[1]
    #
    # @param other [Enumerable] The collection to subtract from this set
    # @return [SortedSet]
    def difference(other)
      self.class.alloc(@node.bulk_delete(other))
    end
    alias :subtract :difference
    alias :- :difference

    # Return a new `SortedSet` with all the items which are members of this
    # set or of `other`, but not both. `other` can be any `Enumerable` object.
    #
    # @example
    #   Hamster::SortedSet[1, 2] ^ Hamster::SortedSet[2, 3]
    #   # => Hamster::SortedSet[1, 3]
    #
    # @param other [Enumerable] The collection to take the exclusive disjunction of
    # @return [SortedSet]
    def exclusion(other)
      ((self | other) - (self & other))
    end
    alias :^ :exclusion

    # Return `true` if all items in this set are also in `other`.
    #
    # @example
    #   Hamster::SortedSet[2, 3].subset?(Hamster::SortedSet[1, 2, 3])  # => true
    #
    # @param other [Enumerable]
    # @return [Boolean]
    def subset?(other)
      return false if other.size < size
      all? { |item| other.include?(item) }
    end

    # Return `true` if all items in `other` are also in this set.
    #
    # @example
    #   Hamster::SortedSet[1, 2, 3].superset?(Hamster::SortedSet[2, 3])  # => true
    #
    # @param other [Enumerable]
    # @return [Boolean]
    def superset?(other)
      other.subset?(self)
    end

    # Returns `true` if `other` contains all the items in this set, plus at least
    # one item which is not in this set.
    #
    # @example
    #   Hamster::SortedSet[2, 3].proper_subset?(Hamster::SortedSet[1, 2, 3])     # => true
    #   Hamster::SortedSet[1, 2, 3].proper_subset?(Hamster::SortedSet[1, 2, 3])  # => false
    #
    # @param other [Enumerable]
    # @return [Boolean]
    def proper_subset?(other)
      return false if other.size <= size
      all? { |item| other.include?(item) }
    end

    # Returns `true` if this set contains all the items in `other`, plus at least
    # one item which is not in `other`.
    #
    # @example
    #   Hamster::SortedSet[1, 2, 3].proper_superset?(Hamster::SortedSet[2, 3])     # => true
    #   Hamster::SortedSet[1, 2, 3].proper_superset?(Hamster::SortedSet[1, 2, 3])  # => false
    #
    # @param other [Enumerable]
    # @return [Boolean]
    def proper_superset?(other)
      other.proper_subset?(self)
    end

    # Return `true` if this set and `other` do not share any items.
    #
    # @example
    #   Hamster::SortedSet[1, 2].disjoint?(Hamster::SortedSet[3, 4])  # => true
    #
    # @param other [Enumerable]
    # @return [Boolean]
    def disjoint?(other)
      if size < other.size
        each { |item| return false if other.include?(item) }
      else
        other.each { |item| return false if include?(item) }
      end
      true
    end

    # Return `true` if this set and `other` have at least one item in common.
    #
    # @example
    #   Hamster::SortedSet[1, 2].intersect?(Hamster::SortedSet[2, 3])  # => true
    #
    # @param other [Enumerable]
    # @return [Boolean]
    def intersect?(other)
      !disjoint?(other)
    end

    alias :group :group_by
    alias :classify :group_by

    # Select elements greater than a value.
    #
    # @overload above(item)
    #   Return a new `SortedSet` containing all items greater than `item`.
    #   @return [SortedSet]
    #   @example
    #     s = Hamster::SortedSet[2, 4, 6, 8, 10]
    #     s.above(6)
    #     # => Hamster::SortedSet[8, 10]
    #  
    # @overload above(item)
    #   @yield [item] Once for each item greater than `item`, in order from
    #                 lowest to highest.
    #   @return [nil]
    #   @example
    #     s = Hamster::SortedSet[2, 4, 6, 8, 10]
    #     s.above(6) { |e| puts "Element: #{e}" }
    #  
    #     Element: 8
    #     Element: 10
    #     # => nil
    #
    # @param item [Object]
    def above(item, &block)
      if block_given?
        @node.each_greater(item, false, &block)
      else
        self.class.alloc(@node.suffix(item, false))
      end
    end

    # Select elements less than a value.
    #
    # @overload below(item)
    #   Return a new `SortedSet` containing all items less than `item`.
    #   @return [SortedSet]
    #   @example
    #     s = Hamster::SortedSet[2, 4, 6, 8, 10]
    #     s.below(6)
    #     # => Hamster::SortedSet[2, 4]
    #  
    # @overload below(item)
    #   @yield [item] Once for each item less than `item`, in order from lowest
    #                 to highest.
    #   @return [nil]
    #   @example
    #     s = Hamster::SortedSet[2, 4, 6, 8, 10]
    #     s.below(6) { |e| puts "Element: #{e}" }
    #  
    #     Element: 2
    #     Element: 4 
    #     # => nil
    #
    # @param item [Object]
    def below(item, &block)
      if block_given?
        @node.each_less(item, false, &block)
      else
        self.class.alloc(@node.prefix(item, false))
      end
    end

    # Select elements greater than or equal to a value.
    #
    # @overload from(item)
    #   Return a new `SortedSet` containing all items greater than or equal `item`.
    #   @return [SortedSet]
    #   @example
    #     s = Hamster::SortedSet[2, 4, 6, 8, 10]
    #     s.from(6)
    #     # => Hamster::SortedSet[6, 8, 10]
    #  
    # @overload from(item)
    #   @yield [item] Once for each item greater than or equal to `item`, in
    #                 order from lowest to highest.
    #   @return [nil]
    #   @example
    #     s = Hamster::SortedSet[2, 4, 6, 8, 10]
    #     s.from(6) { |e| puts "Element: #{e}" }
    #  
    #     Element: 6
    #     Element: 8
    #     Element: 10
    #     # => nil
    #
    # @param item [Object]
    def from(item, &block)
      if block_given?
        @node.each_greater(item, true, &block)
      else
        self.class.alloc(@node.suffix(item, true))
      end
    end

    # Select elements less than or equal to a value.
    #
    # @overload up_to(item)
    #   Return a new `SortedSet` containing all items less than or equal to 
    #   `item`.
    #
    #   @return [SortedSet]
    #   @example
    #     s = Hamster::SortedSet[2, 4, 6, 8, 10]
    #     s.upto(6)
    #     # => Hamster::SortedSet[2, 4, 6]
    #  
    # @overload up_to(item)
    #   @yield [item] Once for each item less than or equal to `item`, in order
    #                 from lowest to highest.
    #   @return [nil]
    #   @example
    #     s = Hamster::SortedSet[2, 4, 6, 8, 10]
    #     s.up_to(6) { |e| puts "Element: #{e}" }
    #  
    #     Element: 2
    #     Element: 4 
    #     Element: 6 
    #     # => nil
    #
    # @param item [Object]
    def up_to(item, &block)
      if block_given?
        @node.each_less(item, true, &block)
      else
        self.class.alloc(@node.prefix(item, true))
      end
    end

    # Select elements between two values.
    #
    # @overload between(from, to)
    #   Return a new `SortedSet` containing all items less than or equal to
    #   `to` and greater than or equal to `from`.
    #
    #   @return [SortedSet]
    #   @example
    #     s = Hamster::SortedSet[2, 4, 6, 8, 10]
    #     s.between(5, 8)
    #     # => Hamster::SortedSet[6, 8]
    #  
    # @overload between(item)
    #   @yield [item] Once for each item less than or equal to `to` and greater
    #                 than or equal to `from`, in order from lowest to highest.
    #   @return [nil]
    #   @example
    #     s = Hamster::SortedSet[2, 4, 6, 8, 10]
    #     s.between(5, 8) { |e| puts "Element: #{e}" }
    #  
    #     Element: 6
    #     Element: 8 
    #     # => nil
    #
    # @param from [Object]
    # @param to [Object]
    def between(from, to, &block)
      if block_given?
        @node.each_between(from, to, &block)
      else
        self.class.alloc(@node.between(from, to))
      end
    end

    # Return a randomly chosen item from this set. If the set is empty, return `nil`.
    #
    # @example
    #   Hamster::SortedSet[1, 2, 3, 4, 5].sample  # => 2
    #
    # @return [Object]
    def sample
      @node.at(rand(@node.size))
    end

    # Return an empty `SortedSet` instance, of the same class as this one. Useful if you
    # have multiple subclasses of `SortedSet` and want to treat them polymorphically.
    #
    # @return [SortedSet]
    def clear
      if @node.natural_order?
        self.class.empty
      else
        self.class.alloc(@node.clear)
      end
    end

    # Return true if `other` has the same type and contents as this `SortedSet`.
    #
    # @param other [Object] The object to compare with
    # @return [Boolean]
    def eql?(other)
      return true if other.equal?(self)
      return false if not instance_of?(other.class)
      return false if size != other.size
      a, b = self.to_enum, other.to_enum
      while true
        return false if !a.next.eql?(b.next)
      end
    rescue StopIteration
      true
    end

    # See `Object#hash`.
    # @return [Integer]
    def hash
      reduce(0) { |hash, item| (hash << 5) - hash + item.hash }
    end

    # @return [::Array]
    # @private
    def marshal_dump
      if @node.natural_order?
        to_a
      else
        raise TypeError, "can't dump SortedSet with custom sort order"
      end
    end

    # @private
    def marshal_load(array)
      initialize(array)
    end

    private

    def subsequence(from, length)
      return nil if from > @node.size || from < 0 || length < 0
      length = @node.size - from if @node.size < from + length
      if length == 0
        if @node.natural_order?
          return self.class.empty
        else
          return self.class.alloc(@node.clear)
        end
      end
      self.class.alloc(@node.slice(from, length))
    end

    # Return a new `SortedSet` which is derived from this one, using a modified
    # {AVLNode}.  The new `SortedSet` will retain the existing comparator, if
    # there is one.
    def derive_new_sorted_set(node)
      if node.equal?(@node)
        self
      elsif node.empty?
        clear
      else
        self.class.alloc(node)
      end
    end

    # @private
    class AVLNode
      def self.from_items(items, comparator, from = 0, to = items.size-1) # items must be sorted
        size = to - from + 1
        if size >= 3
          middle = (to + from) / 2
          AVLNode.new(items[middle], comparator, AVLNode.from_items(items, comparator, from, middle-1), AVLNode.from_items(items, comparator, middle+1, to))
        elsif size == 2
          empty = AVLNode::Empty.new(comparator)
          AVLNode.new(items[from], comparator, empty, AVLNode.new(items[from+1], comparator, empty, empty))
        elsif size == 1
          empty = AVLNode::Empty.new(comparator)
          AVLNode.new(items[from], comparator, empty, empty)
        elsif size == 0
          AVLNode::Empty.new(comparator)
        end
      end

      def initialize(item, comparator, left, right)
        @item, @comparator, @left, @right = item, comparator, left, right
        @height = ((right.height > left.height) ? right.height : left.height) + 1
        @size   = right.size + left.size + 1
      end
      attr_reader :item, :left, :right, :height, :size

      def from_items(items)
        AVLNode.from_items(items.sort(&@comparator), @comparator)
      end

      def natural_order?
        false
      end

      def empty?
        false
      end

      def clear
        AVLNode::Empty.new(@comparator)
      end

      def derive(item, left, right)
        AVLNode.new(item, @comparator, left, right)
      end

      def insert(item)
        dir = direction(item)
        if dir == 0
          throw :present
        elsif dir > 0
          rebalance_right(@left, @right.insert(item))
        else
          rebalance_left(@left.insert(item), @right)
        end
      end

      def bulk_insert(items)
        return self if items.empty?
        if items.size == 1
          catch :present do
            return insert(items.first)
          end
          return self
        end
        left, right = partition(items)

        if right.size > left.size
          rebalance_right(@left.bulk_insert(left), @right.bulk_insert(right))
        else
          rebalance_left(@left.bulk_insert(left), @right.bulk_insert(right))
        end
      end

      def delete(item)
        dir = direction(item)
        if dir == 0
          if @right.empty?
            return @left # replace this node with its only child
          elsif @left.empty?
            return @right # likewise
          end

          if balance > 0
            # tree is leaning to the left. replace with highest node on that side
            replace_with = @left.max
            derive(replace_with, @left.delete(replace_with), @right)
          else
            # tree is leaning to the right. replace with lowest node on that side
            replace_with = @right.min
            derive(replace_with, @left, @right.delete(replace_with))
          end
        elsif dir > 0
          rebalance_left(@left, @right.delete(item))
        else
          rebalance_right(@left.delete(item), @right)
        end
      end

      def bulk_delete(items)
        return self if items.empty?
        if items.size == 1
          catch :not_present do
            return delete(items.first)
          end
          return self
        end

        left, right, keep_item = [], [], true
        items.each do |item|
          dir = direction(item)
          if dir > 0
            right << item
          elsif dir < 0
            left << item
          else
            keep_item = false
          end
        end

        left  = @left.bulk_delete(left)
        right = @right.bulk_delete(right)
        finish_removal(keep_item, left, right)
      end

      def keep_only(items)
        return clear if items.empty?

        left, right, keep_item = [], [], false
        items.each do |item|
          dir = direction(item)
          if dir > 0
            right << item
          elsif dir < 0
            left << item
          else
            keep_item = true
          end
        end

        left  = @left.keep_only(left)
        right = @right.keep_only(right)
        finish_removal(keep_item, left, right)
      end

      def finish_removal(keep_item, left, right)
        # deletion of items may have occurred on left and right sides
        # now we may also need to delete the current item
        if keep_item
          rebalance(left, right) # no need to delete the current item
        elsif left.empty?
          right
        elsif right.empty?
          left
        elsif left.height > right.height
          replace_with = left.max
          derive(replace_with, left.delete(replace_with), right)
        else
          replace_with = right.min
          derive(replace_with, left, right.delete(replace_with))
        end
      end

      def prefix(item, inclusive)
        dir = direction(item)
        if dir > 0 || (inclusive && dir == 0)
          rebalance_left(@left, @right.prefix(item, inclusive))
        else
          @left.prefix(item, inclusive)
        end
      end

      def suffix(item, inclusive)
        dir = direction(item)
        if dir < 0 || (inclusive && dir == 0)
          rebalance_right(@left.suffix(item, inclusive), @right)
        else
          @right.suffix(item, inclusive)
        end
      end

      def between(from, to)
        if direction(from) > 0 # all on the right
          @right.between(from, to)
        elsif direction(to) < 0 # all on the left
          @left.between(from, to)
        else
          left = @left.suffix(from, true)
          right = @right.prefix(to, true)
          rebalance(left, right)
        end
      end

      def each_less(item, inclusive, &block)
        dir = direction(item)
        if dir > 0 || (inclusive && dir == 0)
          @left.each(&block)
          yield @item
          @right.each_less(item, inclusive, &block)
        else
          @left.each_less(item, inclusive, &block)
        end
      end

      def each_greater(item, inclusive, &block)
        dir = direction(item)
        if dir < 0 || (inclusive && dir == 0)
          @left.each_greater(item, inclusive, &block)
          yield @item
          @right.each(&block)
        else
          @right.each_greater(item, inclusive, &block)
        end
      end

      def each_between(from, to, &block)
        if direction(from) > 0 # all on the right
          @right.each_between(from, to, &block)
        elsif direction(to) < 0 # all on the left
          @left.each_between(from, to, &block)
        else
          @left.each_greater(from, true, &block)
          yield @item
          @right.each_less(to, true, &block)
        end
      end

      def each(&block)
        @left.each(&block)
        yield @item
        @right.each(&block)
      end

      def reverse_each(&block)
        @right.reverse_each(&block)
        yield @item
        @left.reverse_each(&block)
      end

      def drop(n)
        if n >= @size
          clear
        elsif n <= 0
          self
        elsif @left.size >= n
          rebalance_right(@left.drop(n), @right)
        elsif @left.size + 1 == n
          @right
        else
          @right.drop(n - @left.size - 1)
        end
      end

      def take(n)
        if n >= @size
          self
        elsif n <= 0
          clear
        elsif @left.size >= n
          @left.take(n)
        else
          rebalance_left(@left, @right.take(n - @left.size - 1))
        end
      end

      def include?(item)
        dir = direction(item)
        if dir == 0
          true
        elsif dir > 0
          @right.include?(item)
        else
          @left.include?(item)
        end
      end

      def at(index)
        if index < @left.size
          @left.at(index)
        elsif index > @left.size
          @right.at(index - @left.size - 1)
        else
          @item
        end
      end

      def max
        @right.empty? ? @item : @right.max
      end

      def min
        @left.empty? ? @item : @left.min
      end

      def balance
        @left.height - @right.height
      end

      def slice(from, length)
        if length <= 0
          clear
        elsif from + length <= @left.size
          @left.slice(from, length)
        elsif from > @left.size
          @right.slice(from - @left.size - 1, length)
        else
          left  = @left.slice(from, @left.size - from)
          right = @right.slice(0, from + length - @left.size - 1)
          rebalance(left, right)
        end
      end

      def partition(items)
        left, right = [], []
        items.each do |item|
          dir = direction(item)
          if dir > 0
            right << item
          elsif dir < 0
            left << item
          end
        end
        [left, right]
      end

      def rebalance(left, right)
        if left.height > right.height
          rebalance_left(left, right)
        else
          rebalance_right(left, right)
        end
      end

      def rebalance_left(left, right)
        # the tree might be unbalanced to the left (paths on the left too long)
        balance = left.height - right.height
        if balance >= 2
          if left.balance > 0
            # single right rotation
            derive(left.item, left.left, derive(@item, left.right, right))
          else
            # left rotation, then right
            derive(left.right.item, derive(left.item, left.left, left.right.left), derive(@item, left.right.right, right))
          end
        else
          derive(@item, left, right)
        end
      end

      def rebalance_right(left, right)
        # the tree might be unbalanced to the right (paths on the right too long)
        balance = left.height - right.height
        if balance <= -2
          if right.balance > 0
            # right rotation, then left
            derive(right.left.item, derive(@item, left, right.left.left), derive(right.item, right.left.right, right.right))
          else
            # single left rotation
            derive(right.item, derive(@item, left, right.left), right.right)
          end
        else
          derive(@item, left, right)
        end
      end

      def direction(item)
        @comparator.call(item, @item)
      end

      # @private
      class Empty
        def initialize(comparator); @comparator = comparator; end
        def natural_order?; false; end
        def left;  self;    end
        def right; self;    end
        def height;   0;    end
        def size;     0;    end
        def min;    nil;    end
        def max;    nil;    end
        def each;           end
        def reverse_each;   end
        def at(index); nil; end
        def insert(item)
          AVLNode.new(item, @comparator, self, self)
        end
        def bulk_insert(items)
          items = items.to_a if !items.is_a?(Array)
          AVLNode.from_items(items.sort(&@comparator), @comparator)
        end
        def bulk_delete(items); self; end
        def keep_only(items);   self; end
        def delete(item);       throw :not_present; end
        def include?(item);     false; end
        def prefix(item, inclusive); self; end
        def suffix(item, inclusive); self; end
        def between(from, to);       self; end
        def each_greater(item, inclusive); end
        def each_less(item, inclusive);    end
        def each_between(item, inclusive); end
        def drop(n);             self; end
        def take(n);             self; end
        def empty?;              true; end
        def slice(from, length); self; end
      end
    end

    # @private
    # AVL node which does not use a comparator function; it keeps items sorted
    #   in their natural order
    class PlainAVLNode < AVLNode
      def self.from_items(items, from = 0, to = items.size-1) # items must be sorted
        size = to - from + 1
        if size >= 3
          middle = (to + from) / 2
          PlainAVLNode.new(items[middle], PlainAVLNode.from_items(items, from, middle-1), PlainAVLNode.from_items(items, middle+1, to))
        elsif size == 2
          PlainAVLNode.new(items[from], PlainAVLNode::EmptyNode, PlainAVLNode.new(items[from+1], PlainAVLNode::EmptyNode, PlainAVLNode::EmptyNode))
        elsif size == 1
          PlainAVLNode.new(items[from], PlainAVLNode::EmptyNode, PlainAVLNode::EmptyNode)
        elsif size == 0
          PlainAVLNode::EmptyNode
        end
      end

      def initialize(item, left, right)
        @item,  @left, @right = item, left, right
        @height = ((right.height > left.height) ? right.height : left.height) + 1
        @size   = right.size + left.size + 1
      end
      attr_reader :item, :left, :right, :height, :size

      def from_items(items)
        PlainAVLNode.from_items(items.sort)
      end

      def natural_order?
        true
      end

      def clear
        PlainAVLNode::EmptyNode
      end

      def derive(item, left, right)
        PlainAVLNode.new(item, left, right)
      end

      def direction(item)
        item <=> @item
      end

      # @private
      class Empty < AVLNode::Empty
        def initialize;           end
        def natural_order?; true; end
        def insert(item)
          PlainAVLNode.new(item, self, self)
        end
        def bulk_insert(items)
          items = items.to_a if !items.is_a?(Array)
          PlainAVLNode.from_items(items.sort)
        end
      end

      EmptyNode = PlainAVLNode::Empty.new
    end
  end

  # The canonical empty `SortedSet`. Returned by `SortedSet[]`
  # when invoked with no arguments; also returned by `SortedSet.empty`. Prefer using
  # this one rather than creating many empty sorted sets using `SortedSet.new`.
  #
  # @private
  EmptySortedSet = Hamster::SortedSet.empty
end