1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
|
require 'immutable/undefined'
require 'immutable/enumerable'
require 'immutable/hash'
require 'immutable/trie'
require 'immutable/sorted_set'
require 'set'
module Immutable
# `Immutable::Set` is a collection of unordered values with no duplicates. Testing whether
# an object is present in the `Set` can be done in constant time. `Set` is also `Enumerable`, so you can
# iterate over the members of the set with {#each}, transform them with {#map}, filter
# them with {#select}, and so on. Some of the `Enumerable` methods are overridden to
# return `immutable-ruby` collections.
#
# Like the `Set` class in Ruby's standard library, which we will call RubySet,
# `Immutable::Set` defines equivalency of objects using `#hash` and `#eql?`. No two
# objects with the same `#hash` code, and which are also `#eql?`, can coexist in the
# same `Set`. If one is already in the `Set`, attempts to add another one will have
# no effect.
#
# `Set`s have no natural ordering and cannot be compared using `#<=>`. However, they
# define {#<}, {#>}, {#<=}, and {#>=} as shorthand for {#proper_subset?},
# {#proper_superset?}, {#subset?}, and {#superset?} respectively.
#
# The basic set-theoretic operations {#union}, {#intersection}, {#difference}, and
# {#exclusion} work with any `Enumerable` object.
#
# A `Set` can be created in either of the following ways:
#
# Immutable::Set.new([1, 2, 3]) # any Enumerable can be used to initialize
# Immutable::Set['A', 'B', 'C', 'D']
#
# The latter 2 forms of initialization can be used with your own, custom subclasses
# of `Immutable::Set`.
#
# Unlike RubySet, all methods which you might expect to "modify" an `Immutable::Set`
# actually return a new set and leave the existing one unchanged.
#
# @example
# set1 = Immutable::Set[1, 2] # => Immutable::Set[1, 2]
# set2 = Immutable::Set[1, 2] # => Immutable::Set[1, 2]
# set1 == set2 # => true
# set3 = set1.add("foo") # => Immutable::Set[1, 2, "foo"]
# set3 - set2 # => Immutable::Set["foo"]
# set3.subset?(set1) # => false
# set1.subset?(set3) # => true
#
class Set
include Immutable::Enumerable
class << self
# Create a new `Set` populated with the given items.
# @return [Set]
def [](*items)
items.empty? ? empty : new(items)
end
# Return an empty `Set`. If used on a subclass, returns an empty instance
# of that class.
#
# @return [Set]
def empty
@empty ||= new
end
# "Raw" allocation of a new `Set`. Used internally to create a new
# instance quickly after obtaining a modified {Trie}.
#
# @return [Set]
# @private
def alloc(trie = EmptyTrie)
allocate.tap { |s| s.instance_variable_set(:@trie, trie) }.freeze
end
end
def initialize(items=[])
@trie = Trie.new(0)
items.each { |item| @trie.put!(item, nil) }
freeze
end
# Return `true` if this `Set` contains no items.
# @return [Boolean]
def empty?
@trie.empty?
end
# Return the number of items in this `Set`.
# @return [Integer]
def size
@trie.size
end
alias length size
# Return a new `Set` with `item` added. If `item` is already in the set,
# return `self`.
#
# @example
# Immutable::Set[1, 2, 3].add(4) # => Immutable::Set[1, 2, 4, 3]
# Immutable::Set[1, 2, 3].add(2) # => Immutable::Set[1, 2, 3]
#
# @param item [Object] The object to add
# @return [Set]
def add(item)
include?(item) ? self : self.class.alloc(@trie.put(item, nil))
end
alias << add
# If `item` is not a member of this `Set`, return a new `Set` with `item` added.
# Otherwise, return `false`.
#
# @example
# Immutable::Set[1, 2, 3].add?(4) # => Immutable::Set[1, 2, 4, 3]
# Immutable::Set[1, 2, 3].add?(2) # => false
#
# @param item [Object] The object to add
# @return [Set, false]
def add?(item)
!include?(item) && add(item)
end
# Return a new `Set` with `item` removed. If `item` is not a member of the set,
# return `self`.
#
# @example
# Immutable::Set[1, 2, 3].delete(1) # => Immutable::Set[2, 3]
# Immutable::Set[1, 2, 3].delete(99) # => Immutable::Set[1, 2, 3]
#
# @param item [Object] The object to remove
# @return [Set]
def delete(item)
trie = @trie.delete(item)
new_trie(trie)
end
# If `item` is a member of this `Set`, return a new `Set` with `item` removed.
# Otherwise, return `false`.
#
# @example
# Immutable::Set[1, 2, 3].delete?(1) # => Immutable::Set[2, 3]
# Immutable::Set[1, 2, 3].delete?(99) # => false
#
# @param item [Object] The object to remove
# @return [Set, false]
def delete?(item)
include?(item) && delete(item)
end
# Call the block once for each item in this `Set`. No specific iteration order
# is guaranteed, but the order will be stable for any particular `Set`. If
# no block is given, an `Enumerator` is returned instead.
#
# @example
# Immutable::Set["Dog", "Elephant", "Lion"].each { |e| puts e }
# Elephant
# Dog
# Lion
# # => Immutable::Set["Dog", "Elephant", "Lion"]
#
# @yield [item] Once for each item.
# @return [self, Enumerator]
def each
return to_enum if not block_given?
@trie.each { |key, _| yield(key) }
self
end
# Call the block once for each item in this `Set`. Iteration order will be
# the opposite of {#each}. If no block is given, an `Enumerator` is
# returned instead.
#
# @example
# Immutable::Set["Dog", "Elephant", "Lion"].reverse_each { |e| puts e }
# Lion
# Dog
# Elephant
# # => Immutable::Set["Dog", "Elephant", "Lion"]
#
# @yield [item] Once for each item.
# @return [self]
def reverse_each
return enum_for(:reverse_each) if not block_given?
@trie.reverse_each { |key, _| yield(key) }
self
end
# Return a new `Set` with all the items for which the block returns true.
#
# @example
# Immutable::Set["Elephant", "Dog", "Lion"].select { |e| e.size >= 4 }
# # => Immutable::Set["Elephant", "Lion"]
# @yield [item] Once for each item.
# @return [Set]
def select
return enum_for(:select) unless block_given?
trie = @trie.select { |key, _| yield(key) }
new_trie(trie)
end
alias find_all select
alias keep_if select
# Call the block once for each item in this `Set`. All the values returned
# from the block will be gathered into a new `Set`. If no block is given,
# an `Enumerator` is returned instead.
#
# @example
# Immutable::Set["Cat", "Elephant", "Dog", "Lion"].map { |e| e.size }
# # => Immutable::Set[8, 4, 3]
#
# @yield [item] Once for each item.
# @return [Set]
def map
return enum_for(:map) if not block_given?
return self if empty?
self.class.new(super)
end
alias collect map
# Return `true` if the given item is present in this `Set`. More precisely,
# return `true` if an object with the same `#hash` code, and which is also `#eql?`
# to the given object is present.
#
# @example
# Immutable::Set["A", "B", "C"].include?("B") # => true
# Immutable::Set["A", "B", "C"].include?("Z") # => false
#
# @param object [Object] The object to check for
# @return [Boolean]
def include?(object)
@trie.key?(object)
end
alias member? include?
# Return a member of this `Set`. The member chosen will be the first one which
# would be yielded by {#each}. If the set is empty, return `nil`.
#
# @example
# Immutable::Set["A", "B", "C"].first # => "C"
#
# @return [Object]
def first
(entry = @trie.at(0)) && entry[0]
end
# Return a {SortedSet} which contains the same items as this `Set`, ordered by
# the given comparator block.
#
# @example
# Immutable::Set["Elephant", "Dog", "Lion"].sort
# # => Immutable::SortedSet["Dog", "Elephant", "Lion"]
# Immutable::Set["Elephant", "Dog", "Lion"].sort { |a,b| a.size <=> b.size }
# # => Immutable::SortedSet["Dog", "Lion", "Elephant"]
#
# @yield [a, b] Any number of times with different pairs of elements.
# @yieldreturn [Integer] Negative if the first element should be sorted
# lower, positive if the latter element, or 0 if
# equal.
# @return [SortedSet]
def sort(&comparator)
SortedSet.new(to_a, &comparator)
end
# Return a {SortedSet} which contains the same items as this `Set`, ordered
# by mapping each item through the provided block to obtain sort keys, and
# then sorting the keys.
#
# @example
# Immutable::Set["Elephant", "Dog", "Lion"].sort_by { |e| e.size }
# # => Immutable::SortedSet["Dog", "Lion", "Elephant"]
#
# @yield [item] Once for each item to create the set, and then potentially
# again depending on what operations are performed on the
# returned {SortedSet}. As such, it is recommended that the
# block be a pure function.
# @yieldreturn [Object] sort key for the item
# @return [SortedSet]
def sort_by(&mapper)
SortedSet.new(to_a, &mapper)
end
# Return a new `Set` which contains all the members of both this `Set` and `other`.
# `other` can be any `Enumerable` object.
#
# @example
# Immutable::Set[1, 2] | Immutable::Set[2, 3] # => Immutable::Set[1, 2, 3]
#
# @param other [Enumerable] The collection to merge with
# @return [Set]
def union(other)
if other.is_a?(Immutable::Set)
if other.size > size
small_set_pairs = @trie
large_set_trie = other.instance_variable_get(:@trie)
else
small_set_pairs = other.instance_variable_get(:@trie)
large_set_trie = @trie
end
else
if other.respond_to?(:lazy)
small_set_pairs = other.lazy.map { |e| [e, nil] }
else
small_set_pairs = other.map { |e| [e, nil] }
end
large_set_trie = @trie
end
trie = large_set_trie.bulk_put(small_set_pairs)
new_trie(trie)
end
alias | union
alias + union
alias merge union
# Return a new `Set` which contains all the items which are members of both
# this `Set` and `other`. `other` can be any `Enumerable` object.
#
# @example
# Immutable::Set[1, 2] & Immutable::Set[2, 3] # => Immutable::Set[2]
#
# @param other [Enumerable] The collection to intersect with
# @return [Set]
def intersection(other)
if other.size < @trie.size
if other.is_a?(Immutable::Set)
trie = other.instance_variable_get(:@trie).select { |key, _| include?(key) }
else
trie = Trie.new(0)
other.each { |obj| trie.put!(obj, nil) if include?(obj) }
end
else
trie = @trie.select { |key, _| other.include?(key) }
end
new_trie(trie)
end
alias & intersection
# Return a new `Set` with all the items in `other` removed. `other` can be
# any `Enumerable` object.
#
# @example
# Immutable::Set[1, 2] - Immutable::Set[2, 3] # => Immutable::Set[1]
#
# @param other [Enumerable] The collection to subtract from this set
# @return [Set]
def difference(other)
trie = if (@trie.size <= other.size) && (other.is_a?(Immutable::Set) || (defined?(::Set) && other.is_a?(::Set)))
@trie.select { |key, _| !other.include?(key) }
else
@trie.bulk_delete(other)
end
new_trie(trie)
end
alias subtract difference
alias - difference
# Return a new `Set` which contains all the items which are members of this
# `Set` or of `other`, but not both. `other` can be any `Enumerable` object.
#
# @example
# Immutable::Set[1, 2] ^ Immutable::Set[2, 3] # => Immutable::Set[1, 3]
#
# @param other [Enumerable] The collection to take the exclusive disjunction of
# @return [Set]
def exclusion(other)
((self | other) - (self & other))
end
alias ^ exclusion
# Return `true` if all items in this `Set` are also in `other`.
#
# @example
# Immutable::Set[2, 3].subset?(Immutable::Set[1, 2, 3]) # => true
#
# @param other [Set]
# @return [Boolean]
def subset?(other)
return false if other.size < size
# This method has the potential to be very slow if 'other' is a large Array, so to avoid that,
# we convert those Arrays to Sets before checking presence of items
# Time to convert Array -> Set is linear in array.size
# Time to check for presence of all items in an Array is proportional to set.size * array.size
# Note that both sides of that equation have array.size -- hence those terms cancel out,
# and the break-even point is solely dependent on the size of this collection
# After doing some benchmarking to estimate the constants, it appears break-even is at ~190 items
# We also check other.size, to avoid the more expensive #is_a? checks in cases where it doesn't matter
#
if other.size >= 150 && @trie.size >= 190 && !(other.is_a?(Immutable::Set) || other.is_a?(::Set))
other = ::Set.new(other)
end
all? { |item| other.include?(item) }
end
alias <= subset?
# Return `true` if all items in `other` are also in this `Set`.
#
# @example
# Immutable::Set[1, 2, 3].superset?(Immutable::Set[2, 3]) # => true
#
# @param other [Set]
# @return [Boolean]
def superset?(other)
other.subset?(self)
end
alias >= superset?
# Returns `true` if `other` contains all the items in this `Set`, plus at least
# one item which is not in this set.
#
# @example
# Immutable::Set[2, 3].proper_subset?(Immutable::Set[1, 2, 3]) # => true
# Immutable::Set[1, 2, 3].proper_subset?(Immutable::Set[1, 2, 3]) # => false
#
# @param other [Set]
# @return [Boolean]
def proper_subset?(other)
return false if other.size <= size
# See comments above
if other.size >= 150 && @trie.size >= 190 && !(other.is_a?(Immutable::Set) || other.is_a?(::Set))
other = ::Set.new(other)
end
all? { |item| other.include?(item) }
end
alias < proper_subset?
# Returns `true` if this `Set` contains all the items in `other`, plus at least
# one item which is not in `other`.
#
# @example
# Immutable::Set[1, 2, 3].proper_superset?(Immutable::Set[2, 3]) # => true
# Immutable::Set[1, 2, 3].proper_superset?(Immutable::Set[1, 2, 3]) # => false
#
# @param other [Set]
# @return [Boolean]
def proper_superset?(other)
other.proper_subset?(self)
end
alias > proper_superset?
# Return `true` if this `Set` and `other` do not share any items.
#
# @example
# Immutable::Set[1, 2].disjoint?(Immutable::Set[8, 9]) # => true
#
# @param other [Set]
# @return [Boolean]
def disjoint?(other)
if other.size <= size
other.each { |item| return false if include?(item) }
else
# See comment on #subset?
if other.size >= 150 && @trie.size >= 190 && !(other.is_a?(Immutable::Set) || other.is_a?(::Set))
other = ::Set.new(other)
end
each { |item| return false if other.include?(item) }
end
true
end
# Return `true` if this `Set` and `other` have at least one item in common.
#
# @example
# Immutable::Set[1, 2].intersect?(Immutable::Set[2, 3]) # => true
#
# @param other [Set]
# @return [Boolean]
def intersect?(other)
!disjoint?(other)
end
# Recursively insert the contents of any nested `Set`s into this `Set`, and
# remove them.
#
# @example
# Immutable::Set[Immutable::Set[1, 2], Immutable::Set[3, 4]].flatten
# # => Immutable::Set[1, 2, 3, 4]
#
# @return [Set]
def flatten
reduce(self.class.empty) do |set, item|
next set.union(item.flatten) if item.is_a?(Set)
set.add(item)
end
end
alias group group_by
alias classify group_by
# Return a randomly chosen item from this `Set`. If the set is empty, return `nil`.
#
# @example
# Immutable::Set[1, 2, 3, 4, 5].sample # => 3
#
# @return [Object]
def sample
empty? ? nil : @trie.at(rand(size))[0]
end
# Return an empty `Set` instance, of the same class as this one. Useful if you
# have multiple subclasses of `Set` and want to treat them polymorphically.
#
# @return [Set]
def clear
self.class.empty
end
# Return true if `other` has the same type and contents as this `Set`.
#
# @param other [Object] The object to compare with
# @return [Boolean]
def eql?(other)
return true if other.equal?(self)
return false if not instance_of?(other.class)
other_trie = other.instance_variable_get(:@trie)
return false if @trie.size != other_trie.size
@trie.each do |key, _|
return false if !other_trie.key?(key)
end
true
end
alias == eql?
# See `Object#hash`.
# @return [Integer]
def hash
reduce(0) { |hash, item| (hash << 5) - hash + item.hash }
end
# Return `self`. Since this is an immutable object duplicates are
# equivalent.
# @return [Set]
def dup
self
end
alias clone dup
undef :"<=>" # Sets are not ordered, so Enumerable#<=> will give a meaningless result
undef :each_index # Set members cannot be accessed by 'index', so #each_index is not meaningful
# Return `self`.
#
# @return [self]
def to_set
self
end
# @private
def marshal_dump
output = {}
each do |key|
output[key] = nil
end
output
end
# @private
def marshal_load(dictionary)
@trie = dictionary.reduce(EmptyTrie) do |trie, key_value|
trie.put(key_value.first, nil)
end
end
private
def new_trie(trie)
if trie.empty?
self.class.empty
elsif trie.equal?(@trie)
self
else
self.class.alloc(trie)
end
end
end
# The canonical empty `Set`. Returned by `Set[]` when
# invoked with no arguments; also returned by `Set.empty`. Prefer using this
# one rather than creating many empty sets using `Set.new`.
#
# @private
EmptySet = Immutable::Set.empty
end
|