1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
|
require 'immutable/enumerable'
require 'immutable/hash'
module Immutable
# A `Vector` is an ordered, integer-indexed collection of objects. Like
# Ruby's `Array`, `Vector` indexing starts at zero and negative indexes count
# back from the end.
#
# `Vector` has a similar interface to `Array`. The main difference is methods
# that would destructively update an `Array` (such as {#insert} or
# {#delete_at}) instead return new `Vectors` and leave the existing one
# unchanged.
#
# ### Creating New Vectors
#
# Immutable::Vector.new([:first, :second, :third])
# Immutable::Vector[1, 2, 3, 4, 5]
#
# ### Retrieving Items from Vectors
#
# vector = Immutable::Vector[1, 2, 3, 4, 5]
#
# vector[0] # => 1
# vector[-1] # => 5
# vector[0,3] # => Immutable::Vector[1, 2, 3]
# vector[1..-1] # => Immutable::Vector[2, 3, 4, 5]
# vector.first # => 1
# vector.last # => 5
#
# ### Creating Modified Vectors
#
# vector.add(6) # => Immutable::Vector[1, 2, 3, 4, 5, 6]
# vector.insert(1, :a, :b) # => Immutable::Vector[1, :a, :b, 2, 3, 4, 5]
# vector.delete_at(2) # => Immutable::Vector[1, 2, 4, 5]
# vector + [6, 7] # => Immutable::Vector[1, 2, 3, 4, 5, 6, 7]
#
class Vector
include Immutable::Enumerable
# @private
BLOCK_SIZE = 32
# @private
INDEX_MASK = BLOCK_SIZE - 1
# @private
BITS_PER_LEVEL = 5
# Return the number of items in this `Vector`
# @return [Integer]
attr_reader :size
alias length size
class << self
# Create a new `Vector` populated with the given items.
# @return [Vector]
def [](*items)
new(items.freeze)
end
# Return an empty `Vector`. If used on a subclass, returns an empty instance
# of that class.
#
# @return [Vector]
def empty
@empty ||= new
end
# "Raw" allocation of a new `Vector`. Used internally to create a new
# instance quickly after building a modified trie.
#
# @return [Vector]
# @private
def alloc(root, size, levels)
obj = allocate
obj.instance_variable_set(:@root, root)
obj.instance_variable_set(:@size, size)
obj.instance_variable_set(:@levels, levels)
obj.freeze
end
end
def initialize(items=[].freeze)
items = items.to_a
if items.size <= 32
items = items.dup.freeze if !items.frozen?
@root, @size, @levels = items, items.size, 0
else
root, size, levels = items, items.size, 0
while root.size > 32
root = root.each_slice(32).to_a
levels += 1
end
@root, @size, @levels = root.freeze, size, levels
end
freeze
end
# Return `true` if this `Vector` contains no items.
#
# @return [Boolean]
def empty?
@size == 0
end
# Return the first item in the `Vector`. If the vector is empty, return `nil`.
#
# @example
# Immutable::Vector["A", "B", "C"].first # => "A"
#
# @return [Object]
def first
get(0)
end
# Return the last item in the `Vector`. If the vector is empty, return `nil`.
#
# @example
# Immutable::Vector["A", "B", "C"].last # => "C"
#
# @return [Object]
def last
get(-1)
end
# Return a new `Vector` with `item` added after the last occupied position.
#
# @example
# Immutable::Vector[1, 2].add(99) # => Immutable::Vector[1, 2, 99]
#
# @param item [Object] The object to insert at the end of the vector
# @return [Vector]
def add(item)
update_root(@size, item)
end
alias << add
alias push add
# Return a new `Vector` with a new value at the given `index`. If `index`
# is greater than the length of the vector, the returned vector will be
# padded with `nil`s to the correct size.
#
# @overload set(index, item)
# Return a new `Vector` with the item at `index` replaced by `item`.
#
# @param item [Object] The object to insert into that position
# @example
# Immutable::Vector[1, 2, 3, 4].set(2, 99)
# # => Immutable::Vector[1, 2, 99, 4]
# Immutable::Vector[1, 2, 3, 4].set(-1, 99)
# # => Immutable::Vector[1, 2, 3, 99]
# Immutable::Vector[].set(2, 99)
# # => Immutable::Vector[nil, nil, 99]
#
# @overload set(index)
# Return a new `Vector` with the item at `index` replaced by the return
# value of the block.
#
# @yield (existing) Once with the existing value at the given `index`.
# @example
# Immutable::Vector[1, 2, 3, 4].set(2) { |v| v * 10 }
# # => Immutable::Vector[1, 2, 30, 4]
#
# @param index [Integer] The index to update. May be negative.
# @return [Vector]
def set(index, item = yield(get(index)))
raise IndexError, "index #{index} outside of vector bounds" if index < -@size
index += @size if index < 0
if index > @size
suffix = Array.new(index - @size, nil)
suffix << item
replace_suffix(@size, suffix)
else
update_root(index, item)
end
end
# Return a new `Vector` with a deeply nested value modified to the result
# of the given code block. When traversing the nested `Vector`s and
# `Hash`es, non-existing keys are created with empty `Hash` values.
#
# The code block receives the existing value of the deeply nested key (or
# `nil` if it doesn't exist). This is useful for "transforming" the value
# associated with a certain key.
#
# Note that the original `Vector` and sub-`Vector`s and sub-`Hash`es are
# left unmodified; new data structure copies are created along the path
# wherever needed.
#
# @example
# v = Immutable::Vector[123, 456, 789, Immutable::Hash["a" => Immutable::Vector[5, 6, 7]]]
# v.update_in(3, "a", 1) { |value| value + 9 }
# # => Immutable::Vector[123, 456, 789, Immutable::Hash["a" => Immutable::Vector[5, 15, 7]]]
#
# @param key_path [Object(s)] List of keys which form the path to the key to be modified
# @yield [value] The previously stored value
# @yieldreturn [Object] The new value to store
# @return [Vector]
def update_in(*key_path, &block)
if key_path.empty?
raise ArgumentError, 'must have at least one key in path'
end
key = key_path[0]
if key_path.size == 1
new_value = block.call(get(key))
else
value = fetch(key, Immutable::EmptyHash)
new_value = value.update_in(*key_path[1..-1], &block)
end
set(key, new_value)
end
# Retrieve the item at `index`. If there is none (either the provided index
# is too high or too low), return `nil`.
#
# @example
# v = Immutable::Vector["A", "B", "C", "D"]
# v.get(2) # => "C"
# v.get(-1) # => "D"
# v.get(4) # => nil
#
# @param index [Integer] The index to retrieve
# @return [Object]
def get(index)
return nil if @size == 0
index += @size if index < 0
return nil if index >= @size || index < 0
leaf_node_for(@root, @levels * BITS_PER_LEVEL, index)[index & INDEX_MASK]
end
alias at get
# Retrieve the value at `index` with optional default.
#
# @overload fetch(index)
# Retrieve the value at the given index, or raise an `IndexError` if not
# found.
#
# @param index [Integer] The index to look up
# @raise [IndexError] if index does not exist
# @example
# v = Immutable::Vector["A", "B", "C", "D"]
# v.fetch(2) # => "C"
# v.fetch(-1) # => "D"
# v.fetch(4) # => IndexError: index 4 outside of vector bounds
#
# @overload fetch(index) { |index| ... }
# Retrieve the value at the given index, or return the result of yielding
# the block if not found.
#
# @yield Once if the index is not found.
# @yieldparam [Integer] index The index which does not exist
# @yieldreturn [Object] Default value to return
# @param index [Integer] The index to look up
# @example
# v = Immutable::Vector["A", "B", "C", "D"]
# v.fetch(2) { |i| i * i } # => "C"
# v.fetch(4) { |i| i * i } # => 16
#
# @overload fetch(index, default)
# Retrieve the value at the given index, or return the provided `default`
# value if not found.
#
# @param index [Integer] The index to look up
# @param default [Object] Object to return if the key is not found
# @example
# v = Immutable::Vector["A", "B", "C", "D"]
# v.fetch(2, "Z") # => "C"
# v.fetch(4, "Z") # => "Z"
#
# @return [Object]
def fetch(index, default = (missing_default = true))
if index >= -@size && index < @size
get(index)
elsif block_given?
yield(index)
elsif !missing_default
default
else
raise IndexError, "index #{index} outside of vector bounds"
end
end
# Return the value of successively indexing into a nested collection.
# If any of the keys is not present, return `nil`.
#
# @example
# v = Immutable::Vector[9, Immutable::Hash[c: 'a', d: 4]]
# v.dig(1, :c) # => "a"
# v.dig(1, :f) # => nil
#
# @return [Object]
def dig(key, *rest)
value = self[key]
if rest.empty? || value.nil?
value
else
value.dig(*rest)
end
end
# Return specific objects from the `Vector`. All overloads return `nil` if
# the starting index is out of range.
#
# @overload vector.slice(index)
# Returns a single object at the given `index`. If `index` is negative,
# count backwards from the end.
#
# @param index [Integer] The index to retrieve. May be negative.
# @return [Object]
# @example
# v = Immutable::Vector["A", "B", "C", "D", "E", "F"]
# v[2] # => "C"
# v[-1] # => "F"
# v[6] # => nil
#
# @overload vector.slice(index, length)
# Return a subvector starting at `index` and continuing for `length`
# elements or until the end of the `Vector`, whichever occurs first.
#
# @param start [Integer] The index to start retrieving items from. May be
# negative.
# @param length [Integer] The number of items to retrieve.
# @return [Vector]
# @example
# v = Immutable::Vector["A", "B", "C", "D", "E", "F"]
# v[2, 3] # => Immutable::Vector["C", "D", "E"]
# v[-2, 3] # => Immutable::Vector["E", "F"]
# v[20, 1] # => nil
#
# @overload vector.slice(index..end)
# Return a subvector starting at `index` and continuing to index
# `end` or the end of the `Vector`, whichever occurs first.
#
# @param range [Range] The range of indices to retrieve.
# @return [Vector]
# @example
# v = Immutable::Vector["A", "B", "C", "D", "E", "F"]
# v[2..3] # => Immutable::Vector["C", "D"]
# v[-2..100] # => Immutable::Vector["E", "F"]
# v[20..21] # => nil
def slice(arg, length = (missing_length = true))
if missing_length
if arg.is_a?(Range)
from, to = arg.begin, arg.end
from += @size if from < 0
to += @size if to < 0
to += 1 if !arg.exclude_end?
length = to - from
length = 0 if length < 0
subsequence(from, length)
else
get(arg)
end
else
arg += @size if arg < 0
subsequence(arg, length)
end
end
alias [] slice
# Return a new `Vector` with the given values inserted before the element
# at `index`. If `index` is greater than the current length, `nil` values
# are added to pad the `Vector` to the required size.
#
# @example
# Immutable::Vector["A", "B", "C", "D"].insert(2, "X", "Y", "Z")
# # => Immutable::Vector["A", "B", "X", "Y", "Z", "C", "D"]
# Immutable::Vector[].insert(2, "X", "Y", "Z")
# # => Immutable::Vector[nil, nil, "X", "Y", "Z"]
#
# @param index [Integer] The index where the new items should go
# @param items [Array] The items to add
# @return [Vector]
# @raise [IndexError] if index exceeds negative range.
def insert(index, *items)
raise IndexError if index < -@size
index += @size if index < 0
if index < @size
suffix = flatten_suffix(@root, @levels * BITS_PER_LEVEL, index, [])
suffix.unshift(*items)
elsif index == @size
suffix = items
else
suffix = Array.new(index - @size, nil).concat(items)
index = @size
end
replace_suffix(index, suffix)
end
# Return a new `Vector` with the element at `index` removed. If the given `index`
# does not exist, return `self`.
#
# @example
# Immutable::Vector["A", "B", "C", "D"].delete_at(2)
# # => Immutable::Vector["A", "B", "D"]
#
# @param index [Integer] The index to remove
# @return [Vector]
def delete_at(index)
return self if index >= @size || index < -@size
index += @size if index < 0
suffix = flatten_suffix(@root, @levels * BITS_PER_LEVEL, index, [])
replace_suffix(index, suffix.tap(&:shift))
end
# Return a new `Vector` with the last element removed. Return `self` if
# empty.
#
# @example
# Immutable::Vector["A", "B", "C"].pop # => Immutable::Vector["A", "B"]
#
# @return [Vector]
def pop
return self if @size == 0
replace_suffix(@size-1, [])
end
# Return a new `Vector` with `object` inserted before the first element,
# moving the other elements upwards.
#
# @example
# Immutable::Vector["A", "B"].unshift("Z")
# # => Immutable::Vector["Z", "A", "B"]
#
# @param object [Object] The value to prepend
# @return [Vector]
def unshift(object)
insert(0, object)
end
# Return a new `Vector` with the first element removed. If empty, return
# `self`.
#
# @example
# Immutable::Vector["A", "B", "C"].shift # => Immutable::Vector["B", "C"]
#
# @return [Vector]
def shift
delete_at(0)
end
# Call the given block once for each item in the vector, passing each
# item from first to last successively to the block. If no block is given,
# an `Enumerator` is returned instead.
#
# @example
# Immutable::Vector["A", "B", "C"].each { |e| puts "Element: #{e}" }
#
# Element: A
# Element: B
# Element: C
# # => Immutable::Vector["A", "B", "C"]
#
# @return [self, Enumerator]
def each(&block)
return to_enum unless block_given?
traverse_depth_first(@root, @levels, &block)
self
end
# Call the given block once for each item in the vector, from last to
# first.
#
# @example
# Immutable::Vector["A", "B", "C"].reverse_each { |e| puts "Element: #{e}" }
#
# Element: C
# Element: B
# Element: A
#
# @return [self]
def reverse_each(&block)
return enum_for(:reverse_each) unless block_given?
reverse_traverse_depth_first(@root, @levels, &block)
self
end
# Return a new `Vector` containing all elements for which the given block returns
# true.
#
# @example
# Immutable::Vector["Bird", "Cow", "Elephant"].select { |e| e.size >= 4 }
# # => Immutable::Vector["Bird", "Elephant"]
#
# @return [Vector]
# @yield [element] Once for each element.
def select
return enum_for(:select) unless block_given?
reduce(self.class.empty) { |vector, item| yield(item) ? vector.add(item) : vector }
end
alias find_all select
alias keep_if select
# Return a new `Vector` with all items which are equal to `obj` removed.
# `#==` is used for checking equality.
#
# @example
# Immutable::Vector["C", "B", "A", "B"].delete("B") # => Immutable::Vector["C", "A"]
#
# @param obj [Object] The object to remove (every occurrence)
# @return [Vector]
def delete(obj)
select { |item| item != obj }
end
# Invoke the given block once for each item in the vector, and return a new
# `Vector` containing the values returned by the block. If no block is
# provided, return an enumerator.
#
# @example
# Immutable::Vector[3, 2, 1].map { |e| e * e } # => Immutable::Vector[9, 4, 1]
#
# @return [Vector, Enumerator]
def map
return enum_for(:map) if not block_given?
return self if empty?
self.class.new(super)
end
alias collect map
# Return a new `Vector` with the concatenated results of running the block once
# for every element in this `Vector`.
#
# @example
# Immutable::Vector[1, 2, 3].flat_map { |x| [x, -x] }
# # => Immutable::Vector[1, -1, 2, -2, 3, -3]
#
# @return [Vector]
def flat_map
return enum_for(:flat_map) if not block_given?
return self if empty?
self.class.new(super)
end
# Return a new `Vector` with the same elements as this one, but randomly permuted.
#
# @example
# Immutable::Vector[1, 2, 3, 4].shuffle # => Immutable::Vector[4, 1, 3, 2]
#
# @return [Vector]
def shuffle
self.class.new(((array = to_a).frozen? ? array.shuffle : array.shuffle!).freeze)
end
# Return a new `Vector` with no duplicate elements, as determined by `#hash` and
# `#eql?`. For each group of equivalent elements, only the first will be retained.
#
# @example
# Immutable::Vector["A", "B", "C", "B"].uniq # => Immutable::Vector["A", "B", "C"]
# Immutable::Vector["a", "A", "b"].uniq(&:upcase) # => Immutable::Vector["a", "b"]
#
# @return [Vector]
def uniq(&block)
array = to_a
if array.frozen?
self.class.new(array.uniq(&block).freeze)
elsif array.uniq!(&block) # returns nil if no changes were made
self.class.new(array.freeze)
else
self
end
end
# Return a new `Vector` with the same elements as this one, but in reverse order.
#
# @example
# Immutable::Vector["A", "B", "C"].reverse # => Immutable::Vector["C", "B", "A"]
#
# @return [Vector]
def reverse
self.class.new(((array = to_a).frozen? ? array.reverse : array.reverse!).freeze)
end
# Return a new `Vector` with the same elements, but rotated so that the one at
# index `count` is the first element of the new vector. If `count` is positive,
# the elements will be shifted left, and those shifted past the lowest position
# will be moved to the end. If `count` is negative, the elements will be shifted
# right, and those shifted past the last position will be moved to the beginning.
#
# @example
# v = Immutable::Vector["A", "B", "C", "D", "E", "F"]
# v.rotate(2) # => Immutable::Vector["C", "D", "E", "F", "A", "B"]
# v.rotate(-1) # => Immutable::Vector["F", "A", "B", "C", "D", "E"]
#
# @param count [Integer] The number of positions to shift items by
# @return [Vector]
def rotate(count = 1)
return self if (count % @size) == 0
self.class.new(((array = to_a).frozen? ? array.rotate(count) : array.rotate!(count)).freeze)
end
# Return a new `Vector` with all nested vectors and arrays recursively "flattened
# out". That is, their elements inserted into the new `Vector` in the place where
# the nested array/vector originally was. If an optional `level` argument is
# provided, the flattening will only be done recursively that number of times.
# A `level` of 0 means not to flatten at all, 1 means to only flatten nested
# arrays/vectors which are directly contained within this `Vector`.
#
# @example
# v = Immutable::Vector["A", Immutable::Vector["B", "C", Immutable::Vector["D"]]]
# v.flatten(1)
# # => Immutable::Vector["A", "B", "C", Immutable::Vector["D"]]
# v.flatten
# # => Immutable::Vector["A", "B", "C", "D"]
#
# @param level [Integer] The depth to which flattening should be applied
# @return [Vector]
def flatten(level = -1)
return self if level == 0
array = to_a
if array.frozen?
self.class.new(array.flatten(level).freeze)
elsif array.flatten!(level) # returns nil if no changes were made
self.class.new(array.freeze)
else
self
end
end
# Return a new `Vector` built by concatenating this one with `other`. `other`
# can be any object which is convertible to an `Array` using `#to_a`.
#
# @example
# Immutable::Vector["A", "B", "C"] + ["D", "E"]
# # => Immutable::Vector["A", "B", "C", "D", "E"]
#
# @param other [Enumerable] The collection to concatenate onto this vector
# @return [Vector]
def +(other)
other = other.to_a
other = other.dup if other.frozen?
replace_suffix(@size, other)
end
alias concat +
# Combine two vectors by "zipping" them together. `others` should be arrays
# and/or vectors. The corresponding elements from this `Vector` and each of
# `others` (that is, the elements with the same indices) will be gathered
# into arrays.
#
# If `others` contains fewer elements than this vector, `nil` will be used
# for padding.
#
# @overload zip(*others)
# Return a new vector containing the new arrays.
#
# @return [Vector]
#
# @overload zip(*others)
# @yield [pair] once for each array
# @return [nil]
#
# @example
# v1 = Immutable::Vector["A", "B", "C"]
# v2 = Immutable::Vector[1, 2]
# v1.zip(v2)
# # => Immutable::Vector[["A", 1], ["B", 2], ["C", nil]]
#
# @param others [Array] The arrays/vectors to zip together with this one
# @return [Vector]
def zip(*others)
if block_given?
super
else
self.class.new(super)
end
end
# Return a new `Vector` with the same items, but sorted.
#
# @overload sort
# Compare elements with their natural sort key (`#<=>`).
#
# @example
# Immutable::Vector["Elephant", "Dog", "Lion"].sort
# # => Immutable::Vector["Dog", "Elephant", "Lion"]
#
# @overload sort
# Uses the block as a comparator to determine sorted order.
#
# @yield [a, b] Any number of times with different pairs of elements.
# @yieldreturn [Integer] Negative if the first element should be sorted
# lower, positive if the latter element, or 0 if
# equal.
# @example
# Immutable::Vector["Elephant", "Dog", "Lion"].sort { |a,b| a.size <=> b.size }
# # => Immutable::Vector["Dog", "Lion", "Elephant"]
#
# @return [Vector]
def sort
self.class.new(super)
end
# Return a new `Vector` with the same items, but sorted. The sort order is
# determined by mapping the items through the given block to obtain sort
# keys, and then sorting the keys according to their natural sort order
# (`#<=>`).
#
# @yield [element] Once for each element.
# @yieldreturn a sort key object for the yielded element.
# @example
# Immutable::Vector["Elephant", "Dog", "Lion"].sort_by { |e| e.size }
# # => Immutable::Vector["Dog", "Lion", "Elephant"]
#
# @return [Vector]
def sort_by
self.class.new(super)
end
# Drop the first `n` elements and return the rest in a new `Vector`.
#
# @example
# Immutable::Vector["A", "B", "C", "D", "E", "F"].drop(2)
# # => Immutable::Vector["C", "D", "E", "F"]
#
# @param n [Integer] The number of elements to remove
# @return [Vector]
# @raise ArgumentError if `n` is negative.
def drop(n)
return self if n == 0
return self.class.empty if n >= @size
raise ArgumentError, 'attempt to drop negative size' if n < 0
self.class.new(flatten_suffix(@root, @levels * BITS_PER_LEVEL, n, []))
end
# Return only the first `n` elements in a new `Vector`.
#
# @example
# Immutable::Vector["A", "B", "C", "D", "E", "F"].take(4)
# # => Immutable::Vector["A", "B", "C", "D"]
#
# @param n [Integer] The number of elements to retain
# @return [Vector]
def take(n)
return self if n >= @size
self.class.new(super)
end
# Drop elements up to, but not including, the first element for which the
# block returns `nil` or `false`. Gather the remaining elements into a new
# `Vector`. If no block is given, an `Enumerator` is returned instead.
#
# @example
# Immutable::Vector[1, 3, 5, 7, 6, 4, 2].drop_while { |e| e < 5 }
# # => Immutable::Vector[5, 7, 6, 4, 2]
#
# @return [Vector, Enumerator]
def drop_while
return enum_for(:drop_while) if not block_given?
self.class.new(super)
end
# Gather elements up to, but not including, the first element for which the
# block returns `nil` or `false`, and return them in a new `Vector`. If no block
# is given, an `Enumerator` is returned instead.
#
# @example
# Immutable::Vector[1, 3, 5, 7, 6, 4, 2].take_while { |e| e < 5 }
# # => Immutable::Vector[1, 3]
#
# @return [Vector, Enumerator]
def take_while
return enum_for(:take_while) if not block_given?
self.class.new(super)
end
# Repetition. Return a new `Vector` built by concatenating `times` copies
# of this one together.
#
# @example
# Immutable::Vector["A", "B"] * 3
# # => Immutable::Vector["A", "B", "A", "B", "A", "B"]
#
# @param times [Integer] The number of times to repeat the elements in this vector
# @return [Vector]
def *(times)
return self.class.empty if times == 0
return self if times == 1
result = (to_a * times)
result.is_a?(Array) ? self.class.new(result) : result
end
# Replace a range of indexes with the given object.
#
# @overload fill(object)
# Return a new `Vector` of the same size, with every index set to
# `object`.
#
# @param [Object] object Fill value.
# @example
# Immutable::Vector["A", "B", "C", "D", "E", "F"].fill("Z")
# # => Immutable::Vector["Z", "Z", "Z", "Z", "Z", "Z"]
#
# @overload fill(object, index)
# Return a new `Vector` with all indexes from `index` to the end of the
# vector set to `object`.
#
# @param [Object] object Fill value.
# @param [Integer] index Starting index. May be negative.
# @example
# Immutable::Vector["A", "B", "C", "D", "E", "F"].fill("Z", 3)
# # => Immutable::Vector["A", "B", "C", "Z", "Z", "Z"]
#
# @overload fill(object, index, length)
# Return a new `Vector` with `length` indexes, beginning from `index`,
# set to `object`. Expands the `Vector` if `length` would extend beyond
# the current length.
#
# @param [Object] object Fill value.
# @param [Integer] index Starting index. May be negative.
# @param [Integer] length
# @example
# Immutable::Vector["A", "B", "C", "D", "E", "F"].fill("Z", 3, 2)
# # => Immutable::Vector["A", "B", "C", "Z", "Z", "F"]
# Immutable::Vector["A", "B"].fill("Z", 1, 5)
# # => Immutable::Vector["A", "Z", "Z", "Z", "Z", "Z"]
#
# @return [Vector]
# @raise [IndexError] if index is out of negative range.
def fill(object, index = 0, length = nil)
raise IndexError if index < -@size
index += @size if index < 0
length ||= @size - index # to the end of the array, if no length given
if index < @size
suffix = flatten_suffix(@root, @levels * BITS_PER_LEVEL, index, [])
suffix.fill(object, 0, length)
elsif index == @size
suffix = Array.new(length, object)
else
suffix = Array.new(index - @size, nil).concat(Array.new(length, object))
index = @size
end
replace_suffix(index, suffix)
end
# When invoked with a block, yields all combinations of length `n` of items
# from the `Vector`, and then returns `self`. There is no guarantee about
# which order the combinations will be yielded.
#
# If no block is given, an `Enumerator` is returned instead.
#
# @example
# v = Immutable::Vector[5, 6, 7, 8]
# v.combination(3) { |c| puts "Combination: #{c}" }
#
# Combination: [5, 6, 7]
# Combination: [5, 6, 8]
# Combination: [5, 7, 8]
# Combination: [6, 7, 8]
# #=> Immutable::Vector[5, 6, 7, 8]
#
# @return [self, Enumerator]
def combination(n)
return enum_for(:combination, n) if not block_given?
return self if n < 0 || @size < n
if n == 0
yield []
elsif n == 1
each { |item| yield [item] }
elsif n == @size
yield to_a
else
combos = lambda do |result,index,remaining|
while @size - index > remaining
if remaining == 1
yield result.dup << get(index)
else
combos[result.dup << get(index), index+1, remaining-1]
end
index += 1
end
index.upto(@size-1) { |i| result << get(i) }
yield result
end
combos[[], 0, n]
end
self
end
# When invoked with a block, yields all repeated combinations of length `n` of
# items from the `Vector`, and then returns `self`. A "repeated combination" is
# one in which any item from the `Vector` can appear consecutively any number of
# times.
#
# There is no guarantee about which order the combinations will be yielded in.
#
# If no block is given, an `Enumerator` is returned instead.
#
# @example
# v = Immutable::Vector[5, 6, 7, 8]
# v.repeated_combination(2) { |c| puts "Combination: #{c}" }
#
# Combination: [5, 5]
# Combination: [5, 6]
# Combination: [5, 7]
# Combination: [5, 8]
# Combination: [6, 6]
# Combination: [6, 7]
# Combination: [6, 8]
# Combination: [7, 7]
# Combination: [7, 8]
# Combination: [8, 8]
# # => Immutable::Vector[5, 6, 7, 8]
#
# @return [self, Enumerator]
def repeated_combination(n)
return enum_for(:repeated_combination, n) if not block_given?
if n < 0
# yield nothing
elsif n == 0
yield []
elsif n == 1
each { |item| yield [item] }
elsif @size == 0
# yield nothing
else
combos = lambda do |result,index,remaining|
while index < @size-1
if remaining == 1
yield result.dup << get(index)
else
combos[result.dup << get(index), index, remaining-1]
end
index += 1
end
item = get(index)
remaining.times { result << item }
yield result
end
combos[[], 0, n]
end
self
end
# Yields all permutations of length `n` of items from the `Vector`, and then
# returns `self`. If no length `n` is specified, permutations of all elements
# will be yielded.
#
# There is no guarantee about which order the permutations will be yielded in.
#
# If no block is given, an `Enumerator` is returned instead.
#
# @example
# v = Immutable::Vector[5, 6, 7]
# v.permutation(2) { |p| puts "Permutation: #{p}" }
#
# Permutation: [5, 6]
# Permutation: [5, 7]
# Permutation: [6, 5]
# Permutation: [6, 7]
# Permutation: [7, 5]
# Permutation: [7, 6]
# # => Immutable::Vector[5, 6, 7]
#
# @return [self, Enumerator]
def permutation(n = @size)
return enum_for(:permutation, n) if not block_given?
if n < 0 || @size < n
# yield nothing
elsif n == 0
yield []
elsif n == 1
each { |item| yield [item] }
else
used, result = [], []
perms = lambda do |index|
0.upto(@size-1) do |i|
next if used[i]
result[index] = get(i)
if index < n-1
used[i] = true
perms[index+1]
used[i] = false
else
yield result.dup
end
end
end
perms[0]
end
self
end
# When invoked with a block, yields all repeated permutations of length `n` of
# items from the `Vector`, and then returns `self`. A "repeated permutation" is
# one where any item from the `Vector` can appear any number of times, and in
# any position (not just consecutively)
#
# If no length `n` is specified, permutations of all elements will be yielded.
# There is no guarantee about which order the permutations will be yielded in.
#
# If no block is given, an `Enumerator` is returned instead.
#
# @example
# v = Immutable::Vector[5, 6, 7]
# v.repeated_permutation(2) { |p| puts "Permutation: #{p}" }
#
# Permutation: [5, 5]
# Permutation: [5, 6]
# Permutation: [5, 7]
# Permutation: [6, 5]
# Permutation: [6, 6]
# Permutation: [6, 7]
# Permutation: [7, 5]
# Permutation: [7, 6]
# Permutation: [7, 7]
# # => Immutable::Vector[5, 6, 7]
#
# @return [self, Enumerator]
def repeated_permutation(n = @size)
return enum_for(:repeated_permutation, n) if not block_given?
if n < 0
# yield nothing
elsif n == 0
yield []
elsif n == 1
each { |item| yield [item] }
else
result = []
perms = lambda do |index|
0.upto(@size-1) do |i|
result[index] = get(i)
if index < n-1
perms[index+1]
else
yield result.dup
end
end
end
perms[0]
end
self
end
# Cartesian product or multiplication.
#
# @overload product(*vectors)
# Return a `Vector` of all combinations of elements from this `Vector` and each
# of the given vectors or arrays. The length of the returned `Vector` is the product
# of `self.size` and the size of each argument vector or array.
# @example
# v1 = Immutable::Vector[1, 2, 3]
# v2 = Immutable::Vector["A", "B"]
# v1.product(v2)
# # => [[1, "A"], [1, "B"], [2, "A"], [2, "B"], [3, "A"], [3, "B"]]
# @overload product
# Return the result of multiplying all the items in this `Vector` together.
#
# @example
# Immutable::Vector[1, 2, 3, 4, 5].product # => 120
#
# @return [Vector]
def product(*vectors)
# if no vectors passed, return "product" as in result of multiplying all items
return super if vectors.empty?
vectors.unshift(self)
if vectors.any?(&:empty?)
return block_given? ? self : []
end
counters = Array.new(vectors.size, 0)
bump_counters = lambda do
i = vectors.size-1
counters[i] += 1
while counters[i] == vectors[i].size
counters[i] = 0
i -= 1
return true if i == -1 # we are done
counters[i] += 1
end
false # not done yet
end
build_array = lambda do
array = []
counters.each_with_index { |index,i| array << vectors[i][index] }
array
end
if block_given?
loop do
yield build_array[]
return self if bump_counters[]
end
else
result = []
loop do
result << build_array[]
return result if bump_counters[]
end
end
end
# Assume all elements are vectors or arrays and transpose the rows and columns.
# In other words, take the first element of each nested vector/array and gather
# them together into a new `Vector`. Do likewise for the second, third, and so on
# down to the end of each nested vector/array. Gather all the resulting `Vectors`
# into a new `Vector` and return it.
#
# This operation is closely related to {#zip}. The result is almost the same as
# calling {#zip} on the first nested vector/array with the others supplied as
# arguments.
#
# @example
# Immutable::Vector[["A", 10], ["B", 20], ["C", 30]].transpose
# # => Immutable::Vector[Immutable::Vector["A", "B", "C"], Immutable::Vector[10, 20, 30]]
#
# @return [Vector]
# @raise [IndexError] if elements are not of the same size.
# @raise [TypeError] if an element does not respond to #size and #[]
def transpose
return self.class.empty if empty?
result = Array.new(first.size) { [] }
0.upto(@size-1) do |i|
source = get(i)
if source.size != result.size
raise IndexError, "element size differs (#{source.size} should be #{result.size})"
end
0.upto(result.size-1) do |j|
result[j].push(source[j])
end
end
result.map! { |a| self.class.new(a) }
self.class.new(result)
rescue NoMethodError
if any? { |x| !x.respond_to?(:size) || !x.respond_to?(:[]) }
bad = find { |x| !x.respond_to?(:size) || !x.respond_to?(:[]) }
raise TypeError, "'#{bad.inspect}' must respond to #size and #[] to be transposed"
else
raise
end
end
# Finds a value from this `Vector` which meets the condition defined by the
# provided block, using a binary search. The vector must already be sorted
# with respect to the block. See Ruby's `Array#bsearch` for details,
# behaviour is equivalent.
#
# @example
# v = Immutable::Vector[1, 3, 5, 7, 9, 11, 13]
# # Block returns true/false for exact element match:
# v.bsearch { |e| e > 4 } # => 5
# # Block returns number to match an element in 4 <= e <= 7:
# v.bsearch { |e| 1 - e / 4 } # => 7
#
# @yield Once for at most `log n` elements, where `n` is the size of the
# vector. The exact elements and ordering are undefined.
# @yieldreturn [Boolean] `true` if this element matches the criteria, `false` otherwise.
# @yieldreturn [Integer] See `Array#bsearch` for details.
# @yieldparam [Object] element element to be evaluated
# @return [Object] The matched element, or `nil` if none found.
# @raise TypeError if the block returns a non-numeric, non-boolean, non-nil
# value.
def bsearch
return enum_for(:bsearch) if not block_given?
low, high, result = 0, @size, nil
while low < high
mid = (low + ((high - low) >> 1))
val = get(mid)
v = yield val
if v.is_a? Numeric
if v == 0
return val
elsif v > 0
high = mid
else
low = mid + 1
end
elsif v == true
result = val
high = mid
elsif !v
low = mid + 1
else
raise TypeError, "wrong argument type #{v.class} (must be numeric, true, false, or nil)"
end
end
result
end
# Return an empty `Vector` instance, of the same class as this one. Useful if you
# have multiple subclasses of `Vector` and want to treat them polymorphically.
#
# @return [Vector]
def clear
self.class.empty
end
# Return a randomly chosen item from this `Vector`. If the vector is empty, return `nil`.
#
# @example
# Immutable::Vector[1, 2, 3, 4, 5].sample # => 2
#
# @return [Object]
def sample
get(rand(@size))
end
# Return a new `Vector` with only the elements at the given `indices`, in the
# order specified by `indices`. If any of the `indices` do not exist, `nil`s will
# appear in their places.
#
# @example
# v = Immutable::Vector["A", "B", "C", "D", "E", "F"]
# v.values_at(2, 4, 5) # => Immutable::Vector["C", "E", "F"]
#
# @param indices [Array] The indices to retrieve and gather into a new `Vector`
# @return [Vector]
def values_at(*indices)
self.class.new(indices.map { |i| get(i) }.freeze)
end
# Find the index of an element, starting from the end of the vector.
# Returns `nil` if no element is found.
#
# @overload rindex(obj)
# Return the index of the last element which is `#==` to `obj`.
#
# @example
# v = Immutable::Vector[7, 8, 9, 7, 8, 9]
# v.rindex(8) # => 4
#
# @overload rindex
# Return the index of the last element for which the block returns true.
#
# @yield [element] Once for each element, last to first, until the block
# returns true.
# @example
# v = Immutable::Vector[7, 8, 9, 7, 8, 9]
# v.rindex { |e| e.even? } # => 4
#
# @return [Integer]
def rindex(obj = (missing_arg = true))
i = @size - 1
if missing_arg
if block_given?
reverse_each { |item| return i if yield item; i -= 1 }
nil
else
enum_for(:rindex)
end
else
reverse_each { |item| return i if item == obj; i -= 1 }
nil
end
end
# Assumes all elements are nested, indexable collections, and searches through them,
# comparing `obj` with the first element of each nested collection. Return the
# first nested collection which matches, or `nil` if none is found.
# Behaviour is undefined when elements do not meet assumptions (i.e. are
# not indexable collections).
#
# @example
# v = Immutable::Vector[["A", 10], ["B", 20], ["C", 30]]
# v.assoc("B") # => ["B", 20]
#
# @param obj [Object] The object to search for
# @return [Object]
def assoc(obj)
each do |array|
next if !array.respond_to?(:[])
return array if obj == array[0]
end
nil
end
# Assumes all elements are nested, indexable collections, and searches through them,
# comparing `obj` with the second element of each nested collection. Return
# the first nested collection which matches, or `nil` if none is found.
# Behaviour is undefined when elements do not meet assumptions (i.e. are
# not indexable collections).
#
# @example
# v = Immutable::Vector[["A", 10], ["B", 20], ["C", 30]]
# v.rassoc(20) # => ["B", 20]
#
# @param obj [Object] The object to search for
# @return [Object]
def rassoc(obj)
each do |array|
next if !array.respond_to?(:[])
return array if obj == array[1]
end
nil
end
# Return an `Array` with the same elements, in the same order. The returned
# `Array` may or may not be frozen.
#
# @return [Array]
def to_a
if @levels == 0
# When initializing a Vector with 32 or less items, we always make
# sure @root is frozen, so we can return it directly here
@root
else
flatten_node(@root, @levels * BITS_PER_LEVEL, [])
end
end
alias to_ary to_a
# Return true if `other` has the same type and contents as this `Vector`.
#
# @param other [Object] The collection to compare with
# @return [Boolean]
def eql?(other)
return true if other.equal?(self)
return false unless instance_of?(other.class) && @size == other.size
@root.eql?(other.instance_variable_get(:@root))
end
# See `Object#hash`.
# @return [Integer]
def hash
reduce(0) { |hash, item| (hash << 5) - hash + item.hash }
end
# Return `self`. Since this is an immutable object duplicates are
# equivalent.
# @return [Vector]
def dup
self
end
alias clone dup
# @return [::Array]
# @private
def marshal_dump
to_a
end
# @private
def marshal_load(array)
initialize(array.freeze)
end
private
def traverse_depth_first(node, level, &block)
return node.each(&block) if level == 0
node.each { |child| traverse_depth_first(child, level - 1, &block) }
end
def reverse_traverse_depth_first(node, level, &block)
return node.reverse_each(&block) if level == 0
node.reverse_each { |child| reverse_traverse_depth_first(child, level - 1, &block) }
end
def leaf_node_for(node, bitshift, index)
while bitshift > 0
node = node[(index >> bitshift) & INDEX_MASK]
bitshift -= BITS_PER_LEVEL
end
node
end
def update_root(index, item)
root, levels = @root, @levels
while index >= (1 << (BITS_PER_LEVEL * (levels + 1)))
root = [root].freeze
levels += 1
end
new_root = update_leaf_node(root, levels * BITS_PER_LEVEL, index, item)
if new_root.equal?(root)
self
else
self.class.alloc(new_root, @size > index ? @size : index + 1, levels)
end
end
def update_leaf_node(node, bitshift, index, item)
slot_index = (index >> bitshift) & INDEX_MASK
if bitshift > 0
old_child = node[slot_index] || []
item = update_leaf_node(old_child, bitshift - BITS_PER_LEVEL, index, item)
end
existing_item = node[slot_index]
if existing_item.equal?(item)
node
else
node.dup.tap { |n| n[slot_index] = item }.freeze
end
end
def flatten_range(node, bitshift, from, to)
from_slot = (from >> bitshift) & INDEX_MASK
to_slot = (to >> bitshift) & INDEX_MASK
if bitshift == 0 # are we at the bottom?
node.slice(from_slot, to_slot-from_slot+1)
elsif from_slot == to_slot
flatten_range(node[from_slot], bitshift - BITS_PER_LEVEL, from, to)
else
# the following bitmask can be used to pick out the part of the from/to indices
# which will be used to direct path BELOW this node
mask = ((1 << bitshift) - 1)
result = []
if from & mask == 0
flatten_node(node[from_slot], bitshift - BITS_PER_LEVEL, result)
else
result.concat(flatten_range(node[from_slot], bitshift - BITS_PER_LEVEL, from, from | mask))
end
(from_slot+1).upto(to_slot-1) do |slot_index|
flatten_node(node[slot_index], bitshift - BITS_PER_LEVEL, result)
end
if to & mask == mask
flatten_node(node[to_slot], bitshift - BITS_PER_LEVEL, result)
else
result.concat(flatten_range(node[to_slot], bitshift - BITS_PER_LEVEL, to & ~mask, to))
end
result
end
end
def flatten_node(node, bitshift, result)
if bitshift == 0
result.concat(node)
elsif bitshift == BITS_PER_LEVEL
node.each { |a| result.concat(a) }
else
bitshift -= BITS_PER_LEVEL
node.each { |a| flatten_node(a, bitshift, result) }
end
result
end
def subsequence(from, length)
return nil if from > @size || from < 0 || length < 0
length = @size - from if @size < from + length
return self.class.empty if length == 0
self.class.new(flatten_range(@root, @levels * BITS_PER_LEVEL, from, from + length - 1))
end
def flatten_suffix(node, bitshift, from, result)
from_slot = (from >> bitshift) & INDEX_MASK
if bitshift == 0
if from_slot == 0
result.concat(node)
else
result.concat(node.slice(from_slot, 32)) # entire suffix of node. excess length is ignored by #slice
end
else
mask = ((1 << bitshift) - 1)
if from & mask == 0
from_slot.upto(node.size-1) do |i|
flatten_node(node[i], bitshift - BITS_PER_LEVEL, result)
end
elsif (child = node[from_slot])
flatten_suffix(child, bitshift - BITS_PER_LEVEL, from, result)
(from_slot+1).upto(node.size-1) do |i|
flatten_node(node[i], bitshift - BITS_PER_LEVEL, result)
end
end
result
end
end
def replace_suffix(from, suffix)
# new suffix can go directly after existing elements
raise IndexError if from > @size
root, levels = @root, @levels
if (from >> (BITS_PER_LEVEL * (@levels + 1))) != 0
# index where new suffix goes doesn't fall within current tree
# we will need to deepen tree
root = [root].freeze
levels += 1
end
new_size = from + suffix.size
root = replace_node_suffix(root, levels * BITS_PER_LEVEL, from, suffix)
if !suffix.empty?
levels.times { suffix = suffix.each_slice(32).to_a }
root.concat(suffix)
while root.size > 32
root = root.each_slice(32).to_a
levels += 1
end
else
while root.size == 1 && levels > 0
root = root[0]
levels -= 1
end
end
self.class.alloc(root.freeze, new_size, levels)
end
def replace_node_suffix(node, bitshift, from, suffix)
from_slot = (from >> bitshift) & INDEX_MASK
if bitshift == 0
if from_slot == 0
suffix.shift(32)
else
node.take(from_slot).concat(suffix.shift(32 - from_slot))
end
else
mask = ((1 << bitshift) - 1)
if from & mask == 0
if from_slot == 0
new_node = suffix.shift(32 * (1 << bitshift))
while bitshift != 0
new_node = new_node.each_slice(32).to_a
bitshift -= BITS_PER_LEVEL
end
new_node
else
result = node.take(from_slot)
remainder = suffix.shift((32 - from_slot) * (1 << bitshift))
while bitshift != 0
remainder = remainder.each_slice(32).to_a
bitshift -= BITS_PER_LEVEL
end
result.concat(remainder)
end
elsif (child = node[from_slot])
result = node.take(from_slot)
result.push(replace_node_suffix(child, bitshift - BITS_PER_LEVEL, from, suffix))
remainder = suffix.shift((31 - from_slot) * (1 << bitshift))
while bitshift != 0
remainder = remainder.each_slice(32).to_a
bitshift -= BITS_PER_LEVEL
end
result.concat(remainder)
else
raise "Shouldn't happen"
end
end
end
end
# The canonical empty `Vector`. Returned by `Vector[]` when
# invoked with no arguments; also returned by `Vector.empty`. Prefer using this
# one rather than creating many empty vectors using `Vector.new`.
#
# @private
EmptyVector = Immutable::Vector.empty
end
|