File: vector.rb

package info (click to toggle)
ruby-immutable-ruby 0.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,852 kB
  • sloc: ruby: 16,556; makefile: 4
file content (1555 lines) | stat: -rw-r--r-- 51,032 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
require 'immutable/enumerable'
require 'immutable/hash'

module Immutable

  # A `Vector` is an ordered, integer-indexed collection of objects. Like
  # Ruby's `Array`, `Vector` indexing starts at zero and negative indexes count
  # back from the end.
  #
  # `Vector` has a similar interface to `Array`. The main difference is methods
  # that would destructively update an `Array` (such as {#insert} or
  # {#delete_at}) instead return new `Vectors` and leave the existing one
  # unchanged.
  #
  # ### Creating New Vectors
  #
  #     Immutable::Vector.new([:first, :second, :third])
  #     Immutable::Vector[1, 2, 3, 4, 5]
  #
  # ### Retrieving Items from Vectors
  #
  #     vector = Immutable::Vector[1, 2, 3, 4, 5]
  #
  #     vector[0]      # => 1
  #     vector[-1]     # => 5
  #     vector[0,3]    # => Immutable::Vector[1, 2, 3]
  #     vector[1..-1]  # => Immutable::Vector[2, 3, 4, 5]
  #     vector.first   # => 1
  #     vector.last    # => 5
  #
  # ### Creating Modified Vectors
  #
  #     vector.add(6)            # => Immutable::Vector[1, 2, 3, 4, 5, 6]
  #     vector.insert(1, :a, :b) # => Immutable::Vector[1, :a, :b, 2, 3, 4, 5]
  #     vector.delete_at(2)      # => Immutable::Vector[1, 2, 4, 5]
  #     vector + [6, 7]          # => Immutable::Vector[1, 2, 3, 4, 5, 6, 7]
  #
  class Vector
    include Immutable::Enumerable

    # @private
    BLOCK_SIZE = 32
    # @private
    INDEX_MASK = BLOCK_SIZE - 1
    # @private
    BITS_PER_LEVEL = 5

    # Return the number of items in this `Vector`
    # @return [Integer]
    attr_reader :size
    alias length size

    class << self
      # Create a new `Vector` populated with the given items.
      # @return [Vector]
      def [](*items)
        new(items.freeze)
      end

      # Return an empty `Vector`. If used on a subclass, returns an empty instance
      # of that class.
      #
      # @return [Vector]
      def empty
        @empty ||= new
      end

      # "Raw" allocation of a new `Vector`. Used internally to create a new
      # instance quickly after building a modified trie.
      #
      # @return [Vector]
      # @private
      def alloc(root, size, levels)
        obj = allocate
        obj.instance_variable_set(:@root, root)
        obj.instance_variable_set(:@size, size)
        obj.instance_variable_set(:@levels, levels)
        obj.freeze
      end
    end

    def initialize(items=[].freeze)
      items = items.to_a
      if items.size <= 32
        items = items.dup.freeze if !items.frozen?
        @root, @size, @levels = items, items.size, 0
      else
        root, size, levels = items, items.size, 0
        while root.size > 32
          root = root.each_slice(32).to_a
          levels += 1
        end
        @root, @size, @levels = root.freeze, size, levels
      end
      freeze
    end

    # Return `true` if this `Vector` contains no items.
    #
    # @return [Boolean]
    def empty?
      @size == 0
    end

    # Return the first item in the `Vector`. If the vector is empty, return `nil`.
    #
    # @example
    #   Immutable::Vector["A", "B", "C"].first  # => "A"
    #
    # @return [Object]
    def first
      get(0)
    end

    # Return the last item in the `Vector`. If the vector is empty, return `nil`.
    #
    # @example
    #   Immutable::Vector["A", "B", "C"].last  # => "C"
    #
    # @return [Object]
    def last
      get(-1)
    end

    # Return a new `Vector` with `item` added after the last occupied position.
    #
    # @example
    #   Immutable::Vector[1, 2].add(99)  # => Immutable::Vector[1, 2, 99]
    #
    # @param item [Object] The object to insert at the end of the vector
    # @return [Vector]
    def add(item)
      update_root(@size, item)
    end
    alias << add
    alias push add

    # Return a new `Vector` with a new value at the given `index`. If `index`
    # is greater than the length of the vector, the returned vector will be
    # padded with `nil`s to the correct size.
    #
    # @overload set(index, item)
    #   Return a new `Vector` with the item at `index` replaced by `item`.
    #
    #   @param item [Object] The object to insert into that position
    #   @example
    #     Immutable::Vector[1, 2, 3, 4].set(2, 99)
    #     # => Immutable::Vector[1, 2, 99, 4]
    #     Immutable::Vector[1, 2, 3, 4].set(-1, 99)
    #     # => Immutable::Vector[1, 2, 3, 99]
    #     Immutable::Vector[].set(2, 99)
    #     # => Immutable::Vector[nil, nil, 99]
    #
    # @overload set(index)
    #   Return a new `Vector` with the item at `index` replaced by the return
    #   value of the block.
    #
    #   @yield (existing) Once with the existing value at the given `index`.
    #   @example
    #     Immutable::Vector[1, 2, 3, 4].set(2) { |v| v * 10 }
    #     # => Immutable::Vector[1, 2, 30, 4]
    #
    # @param index [Integer] The index to update. May be negative.
    # @return [Vector]
    def set(index, item = yield(get(index)))
      raise IndexError, "index #{index} outside of vector bounds" if index < -@size
      index += @size if index < 0
      if index > @size
        suffix = Array.new(index - @size, nil)
        suffix << item
        replace_suffix(@size, suffix)
      else
        update_root(index, item)
      end
    end

    # Return a new `Vector` with a deeply nested value modified to the result
    # of the given code block.  When traversing the nested `Vector`s and
    # `Hash`es, non-existing keys are created with empty `Hash` values.
    #
    # The code block receives the existing value of the deeply nested key (or
    # `nil` if it doesn't exist). This is useful for "transforming" the value
    # associated with a certain key.
    #
    # Note that the original `Vector` and sub-`Vector`s and sub-`Hash`es are
    # left unmodified; new data structure copies are created along the path
    # wherever needed.
    #
    # @example
    #   v = Immutable::Vector[123, 456, 789, Immutable::Hash["a" => Immutable::Vector[5, 6, 7]]]
    #   v.update_in(3, "a", 1) { |value| value + 9 }
    #   # => Immutable::Vector[123, 456, 789, Immutable::Hash["a" => Immutable::Vector[5, 15, 7]]]
    #
    # @param key_path [Object(s)] List of keys which form the path to the key to be modified
    # @yield [value] The previously stored value
    # @yieldreturn [Object] The new value to store
    # @return [Vector]
    def update_in(*key_path, &block)
      if key_path.empty?
        raise ArgumentError, 'must have at least one key in path'
      end
      key = key_path[0]
      if key_path.size == 1
        new_value = block.call(get(key))
      else
        value = fetch(key, Immutable::EmptyHash)
        new_value = value.update_in(*key_path[1..-1], &block)
      end
      set(key, new_value)
    end

    # Retrieve the item at `index`. If there is none (either the provided index
    # is too high or too low), return `nil`.
    #
    # @example
    #   v = Immutable::Vector["A", "B", "C", "D"]
    #   v.get(2)   # => "C"
    #   v.get(-1)  # => "D"
    #   v.get(4)   # => nil
    #
    # @param index [Integer] The index to retrieve
    # @return [Object]
    def get(index)
      return nil if @size == 0
      index += @size if index < 0
      return nil if index >= @size || index < 0
      leaf_node_for(@root, @levels * BITS_PER_LEVEL, index)[index & INDEX_MASK]
    end
    alias at get

    # Retrieve the value at `index` with optional default.
    #
    # @overload fetch(index)
    #   Retrieve the value at the given index, or raise an `IndexError` if not
    #   found.
    #
    #   @param index [Integer] The index to look up
    #   @raise [IndexError] if index does not exist
    #   @example
    #     v = Immutable::Vector["A", "B", "C", "D"]
    #     v.fetch(2)       # => "C"
    #     v.fetch(-1)      # => "D"
    #     v.fetch(4)       # => IndexError: index 4 outside of vector bounds
    #
    # @overload fetch(index) { |index| ... }
    #   Retrieve the value at the given index, or return the result of yielding
    #   the block if not found.
    #
    #   @yield Once if the index is not found.
    #   @yieldparam [Integer] index The index which does not exist
    #   @yieldreturn [Object] Default value to return
    #   @param index [Integer] The index to look up
    #   @example
    #     v = Immutable::Vector["A", "B", "C", "D"]
    #     v.fetch(2) { |i| i * i }   # => "C"
    #     v.fetch(4) { |i| i * i }   # => 16
    #
    # @overload fetch(index, default)
    #   Retrieve the value at the given index, or return the provided `default`
    #   value if not found.
    #
    #   @param index [Integer] The index to look up
    #   @param default [Object] Object to return if the key is not found
    #   @example
    #     v = Immutable::Vector["A", "B", "C", "D"]
    #     v.fetch(2, "Z")  # => "C"
    #     v.fetch(4, "Z")  # => "Z"
    #
    # @return [Object]
    def fetch(index, default = (missing_default = true))
      if index >= -@size && index < @size
        get(index)
      elsif block_given?
        yield(index)
      elsif !missing_default
        default
      else
        raise IndexError, "index #{index} outside of vector bounds"
      end
    end

    # Return the value of successively indexing into a nested collection.
    # If any of the keys is not present, return `nil`.
    #
    # @example
    #   v = Immutable::Vector[9, Immutable::Hash[c: 'a', d: 4]]
    #   v.dig(1, :c) # => "a"
    #   v.dig(1, :f) # => nil
    #
    # @return [Object]
    def dig(key, *rest)
      value = self[key]
      if rest.empty? || value.nil?
        value
      else
        value.dig(*rest)
      end
    end

    # Return specific objects from the `Vector`. All overloads return `nil` if
    # the starting index is out of range.
    #
    # @overload vector.slice(index)
    #   Returns a single object at the given `index`. If `index` is negative,
    #   count backwards from the end.
    #
    #   @param index [Integer] The index to retrieve. May be negative.
    #   @return [Object]
    #   @example
    #     v = Immutable::Vector["A", "B", "C", "D", "E", "F"]
    #     v[2]  # => "C"
    #     v[-1] # => "F"
    #     v[6]  # => nil
    #
    # @overload vector.slice(index, length)
    #   Return a subvector starting at `index` and continuing for `length`
    #   elements or until the end of the `Vector`, whichever occurs first.
    #
    #   @param start [Integer] The index to start retrieving items from. May be
    #                          negative.
    #   @param length [Integer] The number of items to retrieve.
    #   @return [Vector]
    #   @example
    #     v = Immutable::Vector["A", "B", "C", "D", "E", "F"]
    #     v[2, 3]  # => Immutable::Vector["C", "D", "E"]
    #     v[-2, 3] # => Immutable::Vector["E", "F"]
    #     v[20, 1] # => nil
    #
    # @overload vector.slice(index..end)
    #   Return a subvector starting at `index` and continuing to index
    #   `end` or the end of the `Vector`, whichever occurs first.
    #
    #   @param range [Range] The range of indices to retrieve.
    #   @return [Vector]
    #   @example
    #     v = Immutable::Vector["A", "B", "C", "D", "E", "F"]
    #     v[2..3]    # => Immutable::Vector["C", "D"]
    #     v[-2..100] # => Immutable::Vector["E", "F"]
    #     v[20..21]  # => nil
    def slice(arg, length = (missing_length = true))
      if missing_length
        if arg.is_a?(Range)
          from, to = arg.begin, arg.end
          from += @size if from < 0
          to   += @size if to < 0
          to   += 1     if !arg.exclude_end?
          length = to - from
          length = 0 if length < 0
          subsequence(from, length)
        else
          get(arg)
        end
      else
        arg += @size if arg < 0
        subsequence(arg, length)
      end
    end
    alias [] slice

    # Return a new `Vector` with the given values inserted before the element
    # at `index`. If `index` is greater than the current length, `nil` values
    # are added to pad the `Vector` to the required size.
    #
    # @example
    #   Immutable::Vector["A", "B", "C", "D"].insert(2, "X", "Y", "Z")
    #   # => Immutable::Vector["A", "B", "X", "Y", "Z", "C", "D"]
    #   Immutable::Vector[].insert(2, "X", "Y", "Z")
    #   # => Immutable::Vector[nil, nil, "X", "Y", "Z"]
    #
    # @param index [Integer] The index where the new items should go
    # @param items [Array] The items to add
    # @return [Vector]
    # @raise [IndexError] if index exceeds negative range.
    def insert(index, *items)
      raise IndexError if index < -@size
      index += @size if index < 0

      if index < @size
        suffix = flatten_suffix(@root, @levels * BITS_PER_LEVEL, index, [])
        suffix.unshift(*items)
      elsif index == @size
        suffix = items
      else
        suffix = Array.new(index - @size, nil).concat(items)
        index = @size
      end

      replace_suffix(index, suffix)
    end

    # Return a new `Vector` with the element at `index` removed. If the given `index`
    # does not exist, return `self`.
    #
    # @example
    #   Immutable::Vector["A", "B", "C", "D"].delete_at(2)
    #   # => Immutable::Vector["A", "B", "D"]
    #
    # @param index [Integer] The index to remove
    # @return [Vector]
    def delete_at(index)
      return self if index >= @size || index < -@size
      index += @size if index < 0

      suffix = flatten_suffix(@root, @levels * BITS_PER_LEVEL, index, [])
      replace_suffix(index, suffix.tap(&:shift))
    end

    # Return a new `Vector` with the last element removed. Return `self` if
    # empty.
    #
    # @example
    #   Immutable::Vector["A", "B", "C"].pop  # => Immutable::Vector["A", "B"]
    #
    # @return [Vector]
    def pop
      return self if @size == 0
      replace_suffix(@size-1, [])
    end

    # Return a new `Vector` with `object` inserted before the first element,
    # moving the other elements upwards.
    #
    # @example
    #   Immutable::Vector["A", "B"].unshift("Z")
    #   # => Immutable::Vector["Z", "A", "B"]
    #
    # @param object [Object] The value to prepend
    # @return [Vector]
    def unshift(object)
      insert(0, object)
    end

    # Return a new `Vector` with the first element removed. If empty, return
    # `self`.
    #
    # @example
    #   Immutable::Vector["A", "B", "C"].shift  # => Immutable::Vector["B", "C"]
    #
    # @return [Vector]
    def shift
      delete_at(0)
    end

    # Call the given block once for each item in the vector, passing each
    # item from first to last successively to the block. If no block is given,
    # an `Enumerator` is returned instead.
    #
    # @example
    #   Immutable::Vector["A", "B", "C"].each { |e| puts "Element: #{e}" }
    #
    #   Element: A
    #   Element: B
    #   Element: C
    #   # => Immutable::Vector["A", "B", "C"]
    #
    # @return [self, Enumerator]
    def each(&block)
      return to_enum unless block_given?
      traverse_depth_first(@root, @levels, &block)
      self
    end

    # Call the given block once for each item in the vector, from last to
    # first.
    #
    # @example
    #   Immutable::Vector["A", "B", "C"].reverse_each { |e| puts "Element: #{e}" }
    #
    #   Element: C
    #   Element: B
    #   Element: A
    #
    # @return [self]
    def reverse_each(&block)
      return enum_for(:reverse_each) unless block_given?
      reverse_traverse_depth_first(@root, @levels, &block)
      self
    end

    # Return a new `Vector` containing all elements for which the given block returns
    # true.
    #
    # @example
    #   Immutable::Vector["Bird", "Cow", "Elephant"].select { |e| e.size >= 4 }
    #   # => Immutable::Vector["Bird", "Elephant"]
    #
    # @return [Vector]
    # @yield [element] Once for each element.
    def select
      return enum_for(:select) unless block_given?
      reduce(self.class.empty) { |vector, item| yield(item) ? vector.add(item) : vector }
    end
    alias find_all select
    alias keep_if  select

    # Return a new `Vector` with all items which are equal to `obj` removed.
    # `#==` is used for checking equality.
    #
    # @example
    #   Immutable::Vector["C", "B", "A", "B"].delete("B")  # => Immutable::Vector["C", "A"]
    #
    # @param obj [Object] The object to remove (every occurrence)
    # @return [Vector]
    def delete(obj)
      select { |item| item != obj }
    end

    # Invoke the given block once for each item in the vector, and return a new
    # `Vector` containing the values returned by the block. If no block is
    # provided, return an enumerator.
    #
    # @example
    #   Immutable::Vector[3, 2, 1].map { |e| e * e }  # => Immutable::Vector[9, 4, 1]
    #
    # @return [Vector, Enumerator]
    def map
      return enum_for(:map) if not block_given?
      return self if empty?
      self.class.new(super)
    end
    alias collect map

    # Return a new `Vector` with the concatenated results of running the block once
    # for every element in this `Vector`.
    #
    # @example
    #   Immutable::Vector[1, 2, 3].flat_map { |x| [x, -x] }
    #   # => Immutable::Vector[1, -1, 2, -2, 3, -3]
    #
    # @return [Vector]
    def flat_map
      return enum_for(:flat_map) if not block_given?
      return self if empty?
      self.class.new(super)
    end

    # Return a new `Vector` with the same elements as this one, but randomly permuted.
    #
    # @example
    #   Immutable::Vector[1, 2, 3, 4].shuffle  # => Immutable::Vector[4, 1, 3, 2]
    #
    # @return [Vector]
    def shuffle
      self.class.new(((array = to_a).frozen? ? array.shuffle : array.shuffle!).freeze)
    end

    # Return a new `Vector` with no duplicate elements, as determined by `#hash` and
    # `#eql?`. For each group of equivalent elements, only the first will be retained.
    #
    # @example
    #   Immutable::Vector["A", "B", "C", "B"].uniq      # => Immutable::Vector["A", "B", "C"]
    #   Immutable::Vector["a", "A", "b"].uniq(&:upcase) # => Immutable::Vector["a", "b"]
    #
    # @return [Vector]
    def uniq(&block)
      array = to_a
      if array.frozen?
        self.class.new(array.uniq(&block).freeze)
      elsif array.uniq!(&block) # returns nil if no changes were made
        self.class.new(array.freeze)
      else
        self
      end
    end

    # Return a new `Vector` with the same elements as this one, but in reverse order.
    #
    # @example
    #   Immutable::Vector["A", "B", "C"].reverse  # => Immutable::Vector["C", "B", "A"]
    #
    # @return [Vector]
    def reverse
      self.class.new(((array = to_a).frozen? ? array.reverse : array.reverse!).freeze)
    end

    # Return a new `Vector` with the same elements, but rotated so that the one at
    # index `count` is the first element of the new vector. If `count` is positive,
    # the elements will be shifted left, and those shifted past the lowest position
    # will be moved to the end. If `count` is negative, the elements will be shifted
    # right, and those shifted past the last position will be moved to the beginning.
    #
    # @example
    #   v = Immutable::Vector["A", "B", "C", "D", "E", "F"]
    #   v.rotate(2)   # => Immutable::Vector["C", "D", "E", "F", "A", "B"]
    #   v.rotate(-1)  # => Immutable::Vector["F", "A", "B", "C", "D", "E"]
    #
    # @param count [Integer] The number of positions to shift items by
    # @return [Vector]
    def rotate(count = 1)
      return self if (count % @size) == 0
      self.class.new(((array = to_a).frozen? ? array.rotate(count) : array.rotate!(count)).freeze)
    end

    # Return a new `Vector` with all nested vectors and arrays recursively "flattened
    # out". That is, their elements inserted into the new `Vector` in the place where
    # the nested array/vector originally was. If an optional `level` argument is
    # provided, the flattening will only be done recursively that number of times.
    # A `level` of 0 means not to flatten at all, 1 means to only flatten nested
    # arrays/vectors which are directly contained within this `Vector`.
    #
    # @example
    #   v = Immutable::Vector["A", Immutable::Vector["B", "C", Immutable::Vector["D"]]]
    #   v.flatten(1)
    #   # => Immutable::Vector["A", "B", "C", Immutable::Vector["D"]]
    #   v.flatten
    #   # => Immutable::Vector["A", "B", "C", "D"]
    #
    # @param level [Integer] The depth to which flattening should be applied
    # @return [Vector]
    def flatten(level = -1)
      return self if level == 0
      array = to_a
      if array.frozen?
        self.class.new(array.flatten(level).freeze)
      elsif array.flatten!(level) # returns nil if no changes were made
        self.class.new(array.freeze)
      else
        self
      end
    end

    # Return a new `Vector` built by concatenating this one with `other`. `other`
    # can be any object which is convertible to an `Array` using `#to_a`.
    #
    # @example
    #   Immutable::Vector["A", "B", "C"] + ["D", "E"]
    #   # => Immutable::Vector["A", "B", "C", "D", "E"]
    #
    # @param other [Enumerable] The collection to concatenate onto this vector
    # @return [Vector]
    def +(other)
      other = other.to_a
      other = other.dup if other.frozen?
      replace_suffix(@size, other)
    end
    alias concat +

    # Combine two vectors by "zipping" them together. `others` should be arrays
    # and/or vectors. The corresponding elements from this `Vector` and each of
    # `others` (that is, the elements with the same indices) will be gathered
    # into arrays.
    #
    # If `others` contains fewer elements than this vector, `nil` will be used
    # for padding.
    #
    # @overload zip(*others)
    #   Return a new vector containing the new arrays.
    #
    #   @return [Vector]
    #
    # @overload zip(*others)
    #   @yield [pair] once for each array
    #   @return [nil]
    #
    # @example
    #   v1 = Immutable::Vector["A", "B", "C"]
    #   v2 = Immutable::Vector[1, 2]
    #   v1.zip(v2)
    #   # => Immutable::Vector[["A", 1], ["B", 2], ["C", nil]]
    #
    # @param others [Array] The arrays/vectors to zip together with this one
    # @return [Vector]
    def zip(*others)
      if block_given?
        super
      else
        self.class.new(super)
      end
    end

    # Return a new `Vector` with the same items, but sorted.
    #
    # @overload sort
    #   Compare elements with their natural sort key (`#<=>`).
    #
    #   @example
    #     Immutable::Vector["Elephant", "Dog", "Lion"].sort
    #     # => Immutable::Vector["Dog", "Elephant", "Lion"]
    #
    # @overload sort
    #   Uses the block as a comparator to determine sorted order.
    #
    #   @yield [a, b] Any number of times with different pairs of elements.
    #   @yieldreturn [Integer] Negative if the first element should be sorted
    #                          lower, positive if the latter element, or 0 if
    #                          equal.
    #   @example
    #     Immutable::Vector["Elephant", "Dog", "Lion"].sort { |a,b| a.size <=> b.size }
    #     # => Immutable::Vector["Dog", "Lion", "Elephant"]
    #
    # @return [Vector]
    def sort
      self.class.new(super)
    end

    # Return a new `Vector` with the same items, but sorted. The sort order is
    # determined by mapping the items through the given block to obtain sort
    # keys, and then sorting the keys according to their natural sort order
    # (`#<=>`).
    #
    # @yield [element] Once for each element.
    # @yieldreturn a sort key object for the yielded element.
    # @example
    #   Immutable::Vector["Elephant", "Dog", "Lion"].sort_by { |e| e.size }
    #   # => Immutable::Vector["Dog", "Lion", "Elephant"]
    #
    # @return [Vector]
    def sort_by
      self.class.new(super)
    end

    # Drop the first `n` elements and return the rest in a new `Vector`.
    #
    # @example
    #   Immutable::Vector["A", "B", "C", "D", "E", "F"].drop(2)
    #   # => Immutable::Vector["C", "D", "E", "F"]
    #
    # @param n [Integer] The number of elements to remove
    # @return [Vector]
    # @raise ArgumentError if `n` is negative.
    def drop(n)
      return self if n == 0
      return self.class.empty if n >= @size
      raise ArgumentError, 'attempt to drop negative size' if n < 0
      self.class.new(flatten_suffix(@root, @levels * BITS_PER_LEVEL, n, []))
    end

    # Return only the first `n` elements in a new `Vector`.
    #
    # @example
    #   Immutable::Vector["A", "B", "C", "D", "E", "F"].take(4)
    #   # => Immutable::Vector["A", "B", "C", "D"]
    #
    # @param n [Integer] The number of elements to retain
    # @return [Vector]
    def take(n)
      return self if n >= @size
      self.class.new(super)
    end

    # Drop elements up to, but not including, the first element for which the
    # block returns `nil` or `false`. Gather the remaining elements into a new
    # `Vector`. If no block is given, an `Enumerator` is returned instead.
    #
    # @example
    #   Immutable::Vector[1, 3, 5, 7, 6, 4, 2].drop_while { |e| e < 5 }
    #   # => Immutable::Vector[5, 7, 6, 4, 2]
    #
    # @return [Vector, Enumerator]
    def drop_while
      return enum_for(:drop_while) if not block_given?
      self.class.new(super)
    end

    # Gather elements up to, but not including, the first element for which the
    # block returns `nil` or `false`, and return them in a new `Vector`. If no block
    # is given, an `Enumerator` is returned instead.
    #
    # @example
    #   Immutable::Vector[1, 3, 5, 7, 6, 4, 2].take_while { |e| e < 5 }
    #   # => Immutable::Vector[1, 3]
    #
    # @return [Vector, Enumerator]
    def take_while
      return enum_for(:take_while) if not block_given?
      self.class.new(super)
    end

    # Repetition. Return a new `Vector` built by concatenating `times` copies
    # of this one together.
    #
    # @example
    #   Immutable::Vector["A", "B"] * 3
    #   # => Immutable::Vector["A", "B", "A", "B", "A", "B"]
    #
    # @param times [Integer] The number of times to repeat the elements in this vector
    # @return [Vector]
    def *(times)
      return self.class.empty if times == 0
      return self if times == 1
      result = (to_a * times)
      result.is_a?(Array) ? self.class.new(result) : result
    end

    # Replace a range of indexes with the given object.
    #
    # @overload fill(object)
    #   Return a new `Vector` of the same size, with every index set to
    #   `object`.
    #
    #   @param [Object] object Fill value.
    #   @example
    #     Immutable::Vector["A", "B", "C", "D", "E", "F"].fill("Z")
    #     # => Immutable::Vector["Z", "Z", "Z", "Z", "Z", "Z"]
    #
    # @overload fill(object, index)
    #   Return a new `Vector` with all indexes from `index` to the end of the
    #   vector set to `object`.
    #
    #   @param [Object] object Fill value.
    #   @param [Integer] index Starting index. May be negative.
    #   @example
    #     Immutable::Vector["A", "B", "C", "D", "E", "F"].fill("Z", 3)
    #     # => Immutable::Vector["A", "B", "C", "Z", "Z", "Z"]
    #
    # @overload fill(object, index, length)
    #   Return a new `Vector` with `length` indexes, beginning from `index`,
    #   set to `object`. Expands the `Vector` if `length` would extend beyond
    #   the current length.
    #
    #   @param [Object] object Fill value.
    #   @param [Integer] index Starting index. May be negative.
    #   @param [Integer] length
    #   @example
    #     Immutable::Vector["A", "B", "C", "D", "E", "F"].fill("Z", 3, 2)
    #     # => Immutable::Vector["A", "B", "C", "Z", "Z", "F"]
    #     Immutable::Vector["A", "B"].fill("Z", 1, 5)
    #     # => Immutable::Vector["A", "Z", "Z", "Z", "Z", "Z"]
    #
    # @return [Vector]
    # @raise [IndexError] if index is out of negative range.
    def fill(object, index = 0, length = nil)
      raise IndexError if index < -@size
      index += @size if index < 0
      length ||= @size - index # to the end of the array, if no length given

      if index < @size
        suffix = flatten_suffix(@root, @levels * BITS_PER_LEVEL, index, [])
        suffix.fill(object, 0, length)
      elsif index == @size
        suffix = Array.new(length, object)
      else
        suffix = Array.new(index - @size, nil).concat(Array.new(length, object))
        index = @size
      end

      replace_suffix(index, suffix)
    end

    # When invoked with a block, yields all combinations of length `n` of items
    # from the `Vector`, and then returns `self`. There is no guarantee about
    # which order the combinations will be yielded.
    #
    # If no block is given, an `Enumerator` is returned instead.
    #
    # @example
    #   v = Immutable::Vector[5, 6, 7, 8]
    #   v.combination(3) { |c| puts "Combination: #{c}" }
    #
    #   Combination: [5, 6, 7]
    #   Combination: [5, 6, 8]
    #   Combination: [5, 7, 8]
    #   Combination: [6, 7, 8]
    #   #=> Immutable::Vector[5, 6, 7, 8]
    #
    # @return [self, Enumerator]
    def combination(n)
      return enum_for(:combination, n) if not block_given?
      return self if n < 0 || @size < n
      if n == 0
        yield []
      elsif n == 1
        each { |item| yield [item] }
      elsif n == @size
        yield to_a
      else
        combos = lambda do |result,index,remaining|
          while @size - index > remaining
            if remaining == 1
              yield result.dup << get(index)
            else
              combos[result.dup << get(index), index+1, remaining-1]
            end
            index += 1
          end
          index.upto(@size-1) { |i| result << get(i) }
          yield result
        end
        combos[[], 0, n]
      end
      self
    end

    # When invoked with a block, yields all repeated combinations of length `n` of
    # items from the `Vector`, and then returns `self`. A "repeated combination" is
    # one in which any item from the `Vector` can appear consecutively any number of
    # times.
    #
    # There is no guarantee about which order the combinations will be yielded in.
    #
    # If no block is given, an `Enumerator` is returned instead.
    #
    # @example
    #   v = Immutable::Vector[5, 6, 7, 8]
    #   v.repeated_combination(2) { |c| puts "Combination: #{c}" }
    #
    #   Combination: [5, 5]
    #   Combination: [5, 6]
    #   Combination: [5, 7]
    #   Combination: [5, 8]
    #   Combination: [6, 6]
    #   Combination: [6, 7]
    #   Combination: [6, 8]
    #   Combination: [7, 7]
    #   Combination: [7, 8]
    #   Combination: [8, 8]
    #   # => Immutable::Vector[5, 6, 7, 8]
    #
    # @return [self, Enumerator]
    def repeated_combination(n)
      return enum_for(:repeated_combination, n) if not block_given?
      if n < 0
        # yield nothing
      elsif n == 0
        yield []
      elsif n == 1
        each { |item| yield [item] }
      elsif @size == 0
        # yield nothing
      else
        combos = lambda do |result,index,remaining|
          while index < @size-1
            if remaining == 1
              yield result.dup << get(index)
            else
              combos[result.dup << get(index), index, remaining-1]
            end
            index += 1
          end
          item = get(index)
          remaining.times { result << item }
          yield result
        end
        combos[[], 0, n]
      end
      self
    end

    # Yields all permutations of length `n` of items from the `Vector`, and then
    # returns `self`. If no length `n` is specified, permutations of all elements
    # will be yielded.
    #
    # There is no guarantee about which order the permutations will be yielded in.
    #
    # If no block is given, an `Enumerator` is returned instead.
    #
    # @example
    #   v = Immutable::Vector[5, 6, 7]
    #   v.permutation(2) { |p| puts "Permutation: #{p}" }
    #
    #   Permutation: [5, 6]
    #   Permutation: [5, 7]
    #   Permutation: [6, 5]
    #   Permutation: [6, 7]
    #   Permutation: [7, 5]
    #   Permutation: [7, 6]
    #   # => Immutable::Vector[5, 6, 7]
    #
    # @return [self, Enumerator]
    def permutation(n = @size)
      return enum_for(:permutation, n) if not block_given?
      if n < 0 || @size < n
        # yield nothing
      elsif n == 0
        yield []
      elsif n == 1
        each { |item| yield [item] }
      else
        used, result = [], []
        perms = lambda do |index|
          0.upto(@size-1) do |i|
            next if used[i]
            result[index] = get(i)
            if index < n-1
              used[i] = true
              perms[index+1]
              used[i] = false
            else
              yield result.dup
            end
          end
        end
        perms[0]
      end
      self
    end

    # When invoked with a block, yields all repeated permutations of length `n` of
    # items from the `Vector`, and then returns `self`. A "repeated permutation" is
    # one where any item from the `Vector` can appear any number of times, and in
    # any position (not just consecutively)
    #
    # If no length `n` is specified, permutations of all elements will be yielded.
    # There is no guarantee about which order the permutations will be yielded in.
    #
    # If no block is given, an `Enumerator` is returned instead.
    #
    # @example
    #   v = Immutable::Vector[5, 6, 7]
    #   v.repeated_permutation(2) { |p| puts "Permutation: #{p}" }
    #
    #   Permutation: [5, 5]
    #   Permutation: [5, 6]
    #   Permutation: [5, 7]
    #   Permutation: [6, 5]
    #   Permutation: [6, 6]
    #   Permutation: [6, 7]
    #   Permutation: [7, 5]
    #   Permutation: [7, 6]
    #   Permutation: [7, 7]
    #   # => Immutable::Vector[5, 6, 7]
    #
    # @return [self, Enumerator]
    def repeated_permutation(n = @size)
      return enum_for(:repeated_permutation, n) if not block_given?
      if n < 0
        # yield nothing
      elsif n == 0
        yield []
      elsif n == 1
        each { |item| yield [item] }
      else
        result = []
        perms = lambda do |index|
          0.upto(@size-1) do |i|
            result[index] = get(i)
            if index < n-1
              perms[index+1]
            else
              yield result.dup
            end
          end
        end
        perms[0]
      end
      self
    end

    # Cartesian product or multiplication.
    #
    # @overload product(*vectors)
    #   Return a `Vector` of all combinations of elements from this `Vector` and each
    #   of the given vectors or arrays. The length of the returned `Vector` is the product
    #   of `self.size` and the size of each argument vector or array.
    #   @example
    #     v1 = Immutable::Vector[1, 2, 3]
    #     v2 = Immutable::Vector["A", "B"]
    #     v1.product(v2)
    #     # => [[1, "A"], [1, "B"], [2, "A"], [2, "B"], [3, "A"], [3, "B"]]
    # @overload product
    #   Return the result of multiplying all the items in this `Vector` together.
    #
    #   @example
    #     Immutable::Vector[1, 2, 3, 4, 5].product  # => 120
    #
    # @return [Vector]
    def product(*vectors)
      # if no vectors passed, return "product" as in result of multiplying all items
      return super if vectors.empty?

      vectors.unshift(self)

      if vectors.any?(&:empty?)
        return block_given? ? self : []
      end

      counters = Array.new(vectors.size, 0)

      bump_counters = lambda do
        i = vectors.size-1
        counters[i] += 1
        while counters[i] == vectors[i].size
          counters[i] = 0
          i -= 1
          return true if i == -1 # we are done
          counters[i] += 1
        end
        false # not done yet
      end
      build_array = lambda do
        array = []
        counters.each_with_index { |index,i| array << vectors[i][index] }
        array
      end

      if block_given?
        loop do
          yield build_array[]
          return self if bump_counters[]
        end
      else
        result = []
        loop do
          result << build_array[]
          return result if bump_counters[]
        end
      end
    end

    # Assume all elements are vectors or arrays and transpose the rows and columns.
    # In other words, take the first element of each nested vector/array and gather
    # them together into a new `Vector`. Do likewise for the second, third, and so on
    # down to the end of each nested vector/array. Gather all the resulting `Vectors`
    # into a new `Vector` and return it.
    #
    # This operation is closely related to {#zip}. The result is almost the same as
    # calling {#zip} on the first nested vector/array with the others supplied as
    # arguments.
    #
    # @example
    #   Immutable::Vector[["A", 10], ["B", 20], ["C", 30]].transpose
    #   # => Immutable::Vector[Immutable::Vector["A", "B", "C"], Immutable::Vector[10, 20, 30]]
    #
    # @return [Vector]
    # @raise [IndexError] if elements are not of the same size.
    # @raise [TypeError] if an element does not respond to #size and #[]
    def transpose
      return self.class.empty if empty?
      result = Array.new(first.size) { [] }

      0.upto(@size-1) do |i|
        source = get(i)
        if source.size != result.size
          raise IndexError, "element size differs (#{source.size} should be #{result.size})"
        end

        0.upto(result.size-1) do |j|
          result[j].push(source[j])
        end
      end

      result.map! { |a| self.class.new(a) }
      self.class.new(result)
    rescue NoMethodError
      if any? { |x| !x.respond_to?(:size) || !x.respond_to?(:[]) }
        bad = find { |x| !x.respond_to?(:size) || !x.respond_to?(:[]) }
        raise TypeError, "'#{bad.inspect}' must respond to #size and #[] to be transposed"
      else
        raise
      end
    end

    # Finds a value from this `Vector` which meets the condition defined by the
    # provided block, using a binary search. The vector must already be sorted
    # with respect to the block.  See Ruby's `Array#bsearch` for details,
    # behaviour is equivalent.
    #
    # @example
    #   v = Immutable::Vector[1, 3, 5, 7, 9, 11, 13]
    #   # Block returns true/false for exact element match:
    #   v.bsearch { |e| e > 4 }      # => 5
    #   # Block returns number to match an element in 4 <= e <= 7:
    #   v.bsearch { |e| 1 - e / 4 }  # => 7
    #
    # @yield Once for at most `log n` elements, where `n` is the size of the
    #        vector. The exact elements and ordering are undefined.
    # @yieldreturn [Boolean] `true` if this element matches the criteria, `false` otherwise.
    # @yieldreturn [Integer] See `Array#bsearch` for details.
    # @yieldparam [Object] element element to be evaluated
    # @return [Object] The matched element, or `nil` if none found.
    # @raise TypeError if the block returns a non-numeric, non-boolean, non-nil
    #                  value.
    def bsearch
      return enum_for(:bsearch) if not block_given?
      low, high, result = 0, @size, nil
      while low < high
        mid = (low + ((high - low) >> 1))
        val = get(mid)
        v   = yield val
        if v.is_a? Numeric
          if v == 0
            return val
          elsif v > 0
            high = mid
          else
            low = mid + 1
          end
        elsif v == true
          result = val
          high = mid
        elsif !v
          low = mid + 1
        else
          raise TypeError, "wrong argument type #{v.class} (must be numeric, true, false, or nil)"
        end
      end
      result
    end

    # Return an empty `Vector` instance, of the same class as this one. Useful if you
    # have multiple subclasses of `Vector` and want to treat them polymorphically.
    #
    # @return [Vector]
    def clear
      self.class.empty
    end

    # Return a randomly chosen item from this `Vector`. If the vector is empty, return `nil`.
    #
    # @example
    #   Immutable::Vector[1, 2, 3, 4, 5].sample  # => 2
    #
    # @return [Object]
    def sample
      get(rand(@size))
    end

    # Return a new `Vector` with only the elements at the given `indices`, in the
    # order specified by `indices`. If any of the `indices` do not exist, `nil`s will
    # appear in their places.
    #
    # @example
    #   v = Immutable::Vector["A", "B", "C", "D", "E", "F"]
    #   v.values_at(2, 4, 5)   # => Immutable::Vector["C", "E", "F"]
    #
    # @param indices [Array] The indices to retrieve and gather into a new `Vector`
    # @return [Vector]
    def values_at(*indices)
      self.class.new(indices.map { |i| get(i) }.freeze)
    end

    # Find the index of an element, starting from the end of the vector.
    # Returns `nil` if no element is found.
    #
    # @overload rindex(obj)
    #   Return the index of the last element which is `#==` to `obj`.
    #
    #   @example
    #     v = Immutable::Vector[7, 8, 9, 7, 8, 9]
    #     v.rindex(8) # => 4
    #
    # @overload rindex
    #   Return the index of the last element for which the block returns true.
    #
    #   @yield [element] Once for each element, last to first, until the block
    #                    returns true.
    #   @example
    #     v = Immutable::Vector[7, 8, 9, 7, 8, 9]
    #     v.rindex { |e| e.even? }  # => 4
    #
    # @return [Integer]
    def rindex(obj = (missing_arg = true))
      i = @size - 1
      if missing_arg
        if block_given?
          reverse_each { |item| return i if yield item; i -= 1 }
          nil
        else
          enum_for(:rindex)
        end
      else
        reverse_each { |item| return i if item == obj; i -= 1 }
        nil
      end
    end

    # Assumes all elements are nested, indexable collections, and searches through them,
    # comparing `obj` with the first element of each nested collection. Return the
    # first nested collection which matches, or `nil` if none is found.
    # Behaviour is undefined when elements do not meet assumptions (i.e. are
    # not indexable collections).
    #
    # @example
    #   v = Immutable::Vector[["A", 10], ["B", 20], ["C", 30]]
    #   v.assoc("B")  # => ["B", 20]
    #
    # @param obj [Object] The object to search for
    # @return [Object]
    def assoc(obj)
      each do |array|
        next if !array.respond_to?(:[])
        return array if obj == array[0]
      end
      nil
    end

    # Assumes all elements are nested, indexable collections, and searches through them,
    # comparing `obj` with the second element of each nested collection. Return
    # the first nested collection which matches, or `nil` if none is found.
    # Behaviour is undefined when elements do not meet assumptions (i.e. are
    # not indexable collections).
    #
    # @example
    #   v = Immutable::Vector[["A", 10], ["B", 20], ["C", 30]]
    #   v.rassoc(20)  # => ["B", 20]
    #
    # @param obj [Object] The object to search for
    # @return [Object]
    def rassoc(obj)
      each do |array|
        next if !array.respond_to?(:[])
        return array if obj == array[1]
      end
      nil
    end

    # Return an `Array` with the same elements, in the same order. The returned
    # `Array` may or may not be frozen.
    #
    # @return [Array]
    def to_a
      if @levels == 0
        # When initializing a Vector with 32 or less items, we always make
        # sure @root is frozen, so we can return it directly here
        @root
      else
        flatten_node(@root, @levels * BITS_PER_LEVEL, [])
      end
    end
    alias to_ary to_a

    # Return true if `other` has the same type and contents as this `Vector`.
    #
    # @param other [Object] The collection to compare with
    # @return [Boolean]
    def eql?(other)
      return true if other.equal?(self)
      return false unless instance_of?(other.class) && @size == other.size
      @root.eql?(other.instance_variable_get(:@root))
    end

    # See `Object#hash`.
    # @return [Integer]
    def hash
      reduce(0) { |hash, item| (hash << 5) - hash + item.hash }
    end

    # Return `self`. Since this is an immutable object duplicates are
    # equivalent.
    # @return [Vector]
    def dup
      self
    end
    alias clone dup

    # @return [::Array]
    # @private
    def marshal_dump
      to_a
    end

    # @private
    def marshal_load(array)
      initialize(array.freeze)
    end

    private

    def traverse_depth_first(node, level, &block)
      return node.each(&block) if level == 0
      node.each { |child| traverse_depth_first(child, level - 1, &block) }
    end

    def reverse_traverse_depth_first(node, level, &block)
      return node.reverse_each(&block) if level == 0
      node.reverse_each { |child| reverse_traverse_depth_first(child, level - 1, &block) }
    end

    def leaf_node_for(node, bitshift, index)
      while bitshift > 0
        node = node[(index >> bitshift) & INDEX_MASK]
        bitshift -= BITS_PER_LEVEL
      end
      node
    end

    def update_root(index, item)
      root, levels = @root, @levels
      while index >= (1 << (BITS_PER_LEVEL * (levels + 1)))
        root = [root].freeze
        levels += 1
      end
      new_root = update_leaf_node(root, levels * BITS_PER_LEVEL, index, item)
      if new_root.equal?(root)
        self
      else
        self.class.alloc(new_root, @size > index ? @size : index + 1, levels)
      end
    end

    def update_leaf_node(node, bitshift, index, item)
      slot_index = (index >> bitshift) & INDEX_MASK
      if bitshift > 0
        old_child = node[slot_index] || []
        item = update_leaf_node(old_child, bitshift - BITS_PER_LEVEL, index, item)
      end
      existing_item = node[slot_index]
      if existing_item.equal?(item)
        node
      else
        node.dup.tap { |n| n[slot_index] = item }.freeze
      end
    end

    def flatten_range(node, bitshift, from, to)
      from_slot = (from >> bitshift) & INDEX_MASK
      to_slot   = (to   >> bitshift) & INDEX_MASK

      if bitshift == 0 # are we at the bottom?
        node.slice(from_slot, to_slot-from_slot+1)
      elsif from_slot == to_slot
        flatten_range(node[from_slot], bitshift - BITS_PER_LEVEL, from, to)
      else
        # the following bitmask can be used to pick out the part of the from/to indices
        #   which will be used to direct path BELOW this node
        mask   = ((1 << bitshift) - 1)
        result = []

        if from & mask == 0
          flatten_node(node[from_slot], bitshift - BITS_PER_LEVEL, result)
        else
          result.concat(flatten_range(node[from_slot], bitshift - BITS_PER_LEVEL, from, from | mask))
        end

        (from_slot+1).upto(to_slot-1) do |slot_index|
          flatten_node(node[slot_index], bitshift - BITS_PER_LEVEL, result)
        end

        if to & mask == mask
          flatten_node(node[to_slot], bitshift - BITS_PER_LEVEL, result)
        else
          result.concat(flatten_range(node[to_slot], bitshift - BITS_PER_LEVEL, to & ~mask, to))
        end

        result
      end
    end

    def flatten_node(node, bitshift, result)
      if bitshift == 0
        result.concat(node)
      elsif bitshift == BITS_PER_LEVEL
        node.each { |a| result.concat(a) }
      else
        bitshift -= BITS_PER_LEVEL
        node.each { |a| flatten_node(a, bitshift, result) }
      end
      result
    end

    def subsequence(from, length)
      return nil if from > @size || from < 0 || length < 0
      length = @size - from if @size < from + length
      return self.class.empty if length == 0
      self.class.new(flatten_range(@root, @levels * BITS_PER_LEVEL, from, from + length - 1))
    end

    def flatten_suffix(node, bitshift, from, result)
      from_slot = (from >> bitshift) & INDEX_MASK

      if bitshift == 0
        if from_slot == 0
          result.concat(node)
        else
          result.concat(node.slice(from_slot, 32)) # entire suffix of node. excess length is ignored by #slice
        end
      else
        mask = ((1 << bitshift) - 1)
        if from & mask == 0
          from_slot.upto(node.size-1) do |i|
            flatten_node(node[i], bitshift - BITS_PER_LEVEL, result)
          end
        elsif (child = node[from_slot])
          flatten_suffix(child, bitshift - BITS_PER_LEVEL, from, result)
          (from_slot+1).upto(node.size-1) do |i|
            flatten_node(node[i], bitshift - BITS_PER_LEVEL, result)
          end
        end
        result
      end
    end

    def replace_suffix(from, suffix)
      # new suffix can go directly after existing elements
      raise IndexError if from > @size
      root, levels = @root, @levels

      if (from >> (BITS_PER_LEVEL * (@levels + 1))) != 0
        # index where new suffix goes doesn't fall within current tree
        # we will need to deepen tree
        root = [root].freeze
        levels += 1
      end

      new_size = from + suffix.size
      root = replace_node_suffix(root, levels * BITS_PER_LEVEL, from, suffix)

      if !suffix.empty?
        levels.times { suffix = suffix.each_slice(32).to_a }
        root.concat(suffix)
        while root.size > 32
          root = root.each_slice(32).to_a
          levels += 1
        end
      else
        while root.size == 1 && levels > 0
          root = root[0]
          levels -= 1
        end
      end

      self.class.alloc(root.freeze, new_size, levels)
    end

    def replace_node_suffix(node, bitshift, from, suffix)
      from_slot = (from >> bitshift) & INDEX_MASK

      if bitshift == 0
        if from_slot == 0
          suffix.shift(32)
        else
          node.take(from_slot).concat(suffix.shift(32 - from_slot))
        end
      else
        mask = ((1 << bitshift) - 1)
        if from & mask == 0
          if from_slot == 0
            new_node = suffix.shift(32 * (1 << bitshift))
            while bitshift != 0
              new_node = new_node.each_slice(32).to_a
              bitshift -= BITS_PER_LEVEL
            end
            new_node
          else
            result = node.take(from_slot)
            remainder = suffix.shift((32 - from_slot) * (1 << bitshift))
            while bitshift != 0
              remainder = remainder.each_slice(32).to_a
              bitshift -= BITS_PER_LEVEL
            end
            result.concat(remainder)
          end
        elsif (child = node[from_slot])
          result = node.take(from_slot)
          result.push(replace_node_suffix(child, bitshift - BITS_PER_LEVEL, from, suffix))
          remainder = suffix.shift((31 - from_slot) * (1 << bitshift))
          while bitshift != 0
            remainder = remainder.each_slice(32).to_a
            bitshift -= BITS_PER_LEVEL
          end
          result.concat(remainder)
        else
          raise "Shouldn't happen"
        end
      end
    end
  end

  # The canonical empty `Vector`. Returned by `Vector[]` when
  # invoked with no arguments; also returned by `Vector.empty`. Prefer using this
  # one rather than creating many empty vectors using `Vector.new`.
  #
  # @private
  EmptyVector = Immutable::Vector.empty
end