1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
|
require 'ipaddress/prefix'
module IPAddress;
#
# =Name
#
# IPAddress::IPv4 - IP version 4 address manipulation library
#
# =Synopsis
#
# require 'ipaddress'
#
# =Description
#
# Class IPAddress::IPv4 is used to handle IPv4 type addresses.
#
class IPv4
include IPAddress
include Enumerable
include Comparable
#
# This Hash contains the prefix values for Classful networks
#
# Note that classes C, D and E will all have a default
# prefix of /24 or 255.255.255.0
#
CLASSFUL = {
/^0../ => 8, # Class A, from 0.0.0.0 to 127.255.255.255
/^10./ => 16, # Class B, from 128.0.0.0 to 191.255.255.255
/^110/ => 24 # Class C, D and E, from 192.0.0.0 to 255.255.255.254
}
#
# Regular expression to match an IPv4 address
#
REGEXP = Regexp.new(/((25[0-5]|2[0-4]\d|1\d\d|[1-9]\d|\d)\.){3}(25[0-5]|2[0-4]\d|1\d\d|[1-9]\d|\d)/)
#
# Creates a new IPv4 address object.
#
# An IPv4 address can be expressed in any of the following forms:
#
# * "10.1.1.1/24": ip +address+ and +prefix+. This is the common and
# suggested way to create an object .
# * "10.1.1.1/255.255.255.0": ip +address+ and +netmask+. Although
# convenient sometimes, this format is less clear than the previous
# one.
# * "10.1.1.1": if the address alone is specified, the prefix will be
# set as default 32, also known as the host prefix
#
# Examples:
#
# # These two are the same
# ip = IPAddress::IPv4.new("10.0.0.1/24")
# ip = IPAddress("10.0.0.1/24")
#
# # These two are the same
# IPAddress::IPv4.new "10.0.0.1/8"
# IPAddress::IPv4.new "10.0.0.1/255.0.0.0"
#
def initialize(str)
ip, netmask = str.split("/")
# Check the ip and remove white space
if IPAddress.valid_ipv4?(ip)
@address = ip.strip
else
raise ArgumentError, "Invalid IP #{ip.inspect}"
end
# Check the netmask
if netmask # netmask is defined
netmask.strip!
if netmask =~ /^\d{1,2}$/ # netmask in cidr format
@prefix = Prefix32.new(netmask.to_i)
elsif IPAddress.valid_ipv4_netmask?(netmask) # netmask in IP format
@prefix = Prefix32.parse_netmask(netmask)
else # invalid netmask
raise ArgumentError, "Invalid netmask #{netmask}"
end
else # netmask is nil, reverting to defaul classful mask
@prefix = Prefix32.new(32)
end
# Array formed with the IP octets
@octets = @address.split(".").map{|i| i.to_i}
# 32 bits interger containing the address
@u32 = (@octets[0]<< 24) + (@octets[1]<< 16) + (@octets[2]<< 8) + (@octets[3])
end # def initialize
#
# Returns the address portion of the IPv4 object
# as a string.
#
# ip = IPAddress("172.16.100.4/22")
#
# ip.address
# #=> "172.16.100.4"
#
def address
@address
end
#
# Returns the prefix portion of the IPv4 object
# as a IPAddress::Prefix32 object
#
# ip = IPAddress("172.16.100.4/22")
#
# ip.prefix
# #=> 22
#
# ip.prefix.class
# #=> IPAddress::Prefix32
#
def prefix
@prefix
end
#
# Set a new prefix number for the object
#
# This is useful if you want to change the prefix
# to an object created with IPv4::parse_u32 or
# if the object was created using the classful
# mask.
#
# ip = IPAddress("172.16.100.4")
#
# puts ip
# #=> 172.16.100.4/16
#
# ip.prefix = 22
#
# puts ip
# #=> 172.16.100.4/22
#
def prefix=(num)
@prefix = Prefix32.new(num)
end
#
# Returns the address as an array of decimal values
#
# ip = IPAddress("172.16.100.4")
#
# ip.octets
# #=> [172, 16, 100, 4]
#
def octets
@octets
end
#
# Returns a string with the address portion of
# the IPv4 object
#
# ip = IPAddress("172.16.100.4/22")
#
# ip.to_s
# #=> "172.16.100.4"
#
def to_s
@address
end
#
# Returns a string with the IP address in canonical
# form.
#
# ip = IPAddress("172.16.100.4/22")
#
# ip.to_string
# #=> "172.16.100.4/22"
#
def to_string
"#@address/#@prefix"
end
#
# Returns the prefix as a string in IP format
#
# ip = IPAddress("172.16.100.4/22")
#
# ip.netmask
# #=> "255.255.252.0"
#
def netmask
@prefix.to_ip
end
#
# Like IPv4#prefix=, this method allow you to
# change the prefix / netmask of an IP address
# object.
#
# ip = IPAddress("172.16.100.4")
#
# puts ip
# #=> 172.16.100.4/16
#
# ip.netmask = "255.255.252.0"
#
# puts ip
# #=> 172.16.100.4/22
#
def netmask=(addr)
@prefix = Prefix32.parse_netmask(addr)
end
#
# Returns the address portion in unsigned
# 32 bits integer format.
#
# This method is identical to the C function
# inet_pton to create a 32 bits address family
# structure.
#
# ip = IPAddress("10.0.0.0/8")
#
# ip.to_i
# #=> 167772160
#
def u32
@u32
end
alias_method :to_i, :u32
alias_method :to_u32, :u32
#
# Returns the address portion in
# hex
#
# ip = IPAddress("10.0.0.0")
#
# ip.to_h
# #=> 0a000000
#
def hex(space=true)
"%.4x%.4x" % [to_u32].pack("N").unpack("nn")
end
alias_method :to_h, :hex
alias_method :to_hex, :hex
#
# Returns the address portion of an IPv4 object
# in a network byte order format.
#
# ip = IPAddress("172.16.10.1/24")
#
# ip.data
# #=> "\254\020\n\001"
#
# It is usually used to include an IP address
# in a data packet to be sent over a socket
#
# a = Socket.open(params) # socket details here
# ip = IPAddress("10.1.1.0/24")
# binary_data = ["Address: "].pack("a*") + ip.data
#
# # Send binary data
# a.puts binary_data
#
def data
[@u32].pack("N")
end
#
# Returns the octet specified by index
#
# ip = IPAddress("172.16.100.50/24")
#
# ip[0]
# #=> 172
# ip[1]
# #=> 16
# ip[2]
# #=> 100
# ip[3]
# #=> 50
#
def [](index)
@octets[index]
end
alias_method :octet, :[]
#
# Updated the octet specified at index
#
# ip = IPAddress("172.16.100.50/24")
# ip[2] = 200
#
# #=> #<IPAddress::IPv4:0x00000000000000 @address="172.16.200.1",
# #=> @prefix=32, @octets=[172, 16, 200, 1], @u32=2886780929>
#
def []=(index, value)
@octets[index] = value.to_i
initialize("#{@octets.join('.')}/#{prefix}")
end
alias_method :octet=, :[]=
#
# Returns the address portion of an IP in binary format,
# as a string containing a sequence of 0 and 1
#
# ip = IPAddress("127.0.0.1")
#
# ip.bits
# #=> "01111111000000000000000000000001"
#
def bits
data.unpack("B*").first
end
#
# Returns the broadcast address for the given IP.
#
# ip = IPAddress("172.16.10.64/24")
#
# ip.broadcast.to_s
# #=> "172.16.10.255"
#
def broadcast
case
when prefix <= 30
self.class.parse_u32(broadcast_u32, @prefix)
when prefix == 31
self.class.parse_u32(-1, @prefix)
when prefix == 32
return self
end
end
#
# Checks if the IP address is actually a network
#
# ip = IPAddress("172.16.10.64/24")
#
# ip.network?
# #=> false
#
# ip = IPAddress("172.16.10.64/26")
#
# ip.network?
# #=> true
#
def network?
(@prefix < 32) && (@u32 | @prefix.to_u32 == @prefix.to_u32)
end
#
# Returns a new IPv4 object with the network number
# for the given IP.
#
# ip = IPAddress("172.16.10.64/24")
#
# ip.network.to_s
# #=> "172.16.10.0"
#
def network
self.class.parse_u32(network_u32, @prefix)
end
#
# Returns a new IPv4 object with the
# first host IP address in the range.
#
# Example: given the 192.168.100.0/24 network, the first
# host IP address is 192.168.100.1.
#
# ip = IPAddress("192.168.100.0/24")
#
# ip.first.to_s
# #=> "192.168.100.1"
#
# The object IP doesn't need to be a network: the method
# automatically gets the network number from it
#
# ip = IPAddress("192.168.100.50/24")
#
# ip.first.to_s
# #=> "192.168.100.1"
#
def first
case
when prefix <= 30
self.class.parse_u32(network_u32+1, @prefix)
when prefix == 31
self.class.parse_u32(network_u32, @prefix)
when prefix == 32
return self
end
end
#
# Like its sibling method IPv4#first, this method
# returns a new IPv4 object with the
# last host IP address in the range.
#
# Example: given the 192.168.100.0/24 network, the last
# host IP address is 192.168.100.254
#
# ip = IPAddress("192.168.100.0/24")
#
# ip.last.to_s
# #=> "192.168.100.254"
#
# The object IP doesn't need to be a network: the method
# automatically gets the network number from it
#
# ip = IPAddress("192.168.100.50/24")
#
# ip.last.to_s
# #=> "192.168.100.254"
#
def last
case
when prefix <= 30
self.class.parse_u32(broadcast_u32-1, @prefix)
when prefix == 31
self.class.parse_u32(broadcast_u32, @prefix)
when prefix == 32
return self
end
end
#
# Iterates over all the hosts IP addresses for the given
# network (or IP address).
#
# ip = IPAddress("10.0.0.1/29")
#
# ip.each_host do |i|
# p i.to_s
# end
# #=> "10.0.0.1"
# #=> "10.0.0.2"
# #=> "10.0.0.3"
# #=> "10.0.0.4"
# #=> "10.0.0.5"
# #=> "10.0.0.6"
#
def each_host
(network_u32+1..broadcast_u32-1).each do |i|
yield self.class.parse_u32(i, @prefix)
end
end
#
# Iterates over all the IP addresses for the given
# network (or IP address).
#
# The object yielded is a new IPv4 object created
# from the iteration.
#
# ip = IPAddress("10.0.0.1/29")
#
# ip.each do |i|
# p i.address
# end
# #=> "10.0.0.0"
# #=> "10.0.0.1"
# #=> "10.0.0.2"
# #=> "10.0.0.3"
# #=> "10.0.0.4"
# #=> "10.0.0.5"
# #=> "10.0.0.6"
# #=> "10.0.0.7"
#
def each
(network_u32..broadcast_u32).each do |i|
yield self.class.parse_u32(i, @prefix)
end
end
#
# Spaceship operator to compare IPv4 objects
#
# Comparing IPv4 addresses is useful to ordinate
# them into lists that match our intuitive
# perception of ordered IP addresses.
#
# The first comparison criteria is the u32 value.
# For example, 10.100.100.1 will be considered
# to be less than 172.16.0.1, because, in a ordered list,
# we expect 10.100.100.1 to come before 172.16.0.1.
#
# The second criteria, in case two IPv4 objects
# have identical addresses, is the prefix. An higher
# prefix will be considered greater than a lower
# prefix. This is because we expect to see
# 10.100.100.0/24 come before 10.100.100.0/25.
#
# Example:
#
# ip1 = IPAddress "10.100.100.1/8"
# ip2 = IPAddress "172.16.0.1/16"
# ip3 = IPAddress "10.100.100.1/16"
#
# ip1 < ip2
# #=> true
# ip1 > ip3
# #=> false
#
# [ip1,ip2,ip3].sort.map{|i| i.to_string}
# #=> ["10.100.100.1/8","10.100.100.1/16","172.16.0.1/16"]
#
def <=>(oth)
return prefix <=> oth.prefix if to_u32 == oth.to_u32
to_u32 <=> oth.to_u32
end
#
# Returns the number of IP addresses included
# in the network. It also counts the network
# address and the broadcast address.
#
# ip = IPAddress("10.0.0.1/29")
#
# ip.size
# #=> 8
#
def size
2 ** @prefix.host_prefix
end
#
# Returns an array with the IP addresses of
# all the hosts in the network.
#
# ip = IPAddress("10.0.0.1/29")
#
# ip.hosts.map {|i| i.address}
# #=> ["10.0.0.1",
# #=> "10.0.0.2",
# #=> "10.0.0.3",
# #=> "10.0.0.4",
# #=> "10.0.0.5",
# #=> "10.0.0.6"]
#
def hosts
to_a[1..-2]
end
#
# Returns the network number in Unsigned 32bits format
#
# ip = IPAddress("10.0.0.1/29")
#
# ip.network_u32
# #=> 167772160
#
def network_u32
@u32 & @prefix.to_u32
end
#
# Returns the broadcast address in Unsigned 32bits format
#
# ip = IPaddress("10.0.0.1/29")
#
# ip.broadcast_u32
# #=> 167772167
#
def broadcast_u32
network_u32 + size - 1
end
#
# Checks whether a subnet includes the given IP address.
#
# Accepts an IPAddress::IPv4 object.
#
# ip = IPAddress("192.168.10.100/24")
#
# addr = IPAddress("192.168.10.102/24")
#
# ip.include? addr
# #=> true
#
# ip.include? IPAddress("172.16.0.48/16")
# #=> false
#
def include?(oth)
@prefix <= oth.prefix and network_u32 == (oth.to_u32 & @prefix.to_u32)
end
#
# Checks whether a subnet includes all the
# given IPv4 objects.
#
# ip = IPAddress("192.168.10.100/24")
#
# addr1 = IPAddress("192.168.10.102/24")
# addr2 = IPAddress("192.168.10.103/24")
#
# ip.include_all?(addr1,addr2)
# #=> true
#
def include_all?(*others)
others.all? {|oth| include?(oth)}
end
#
# Checks if an IPv4 address objects belongs
# to a private network RFC1918
#
# Example:
#
# ip = IPAddress "10.1.1.1/24"
# ip.private?
# #=> true
#
def private?
[self.class.new("10.0.0.0/8"),
self.class.new("172.16.0.0/12"),
self.class.new("192.168.0.0/16")].any? {|i| i.include? self}
end
#
# Checks if an IPv4 address objects belongs
# to a multicast network RFC3171
#
# Example:
#
# ip = IPAddress "224.0.0.0/4"
# ip.multicast?
# #=> true
#
def multicast?
[self.class.new("224.0.0.0/4")].any? {|i| i.include? self}
end
#
# Checks if an IPv4 address objects belongs
# to a multicast network RFC3171
#
# Example:
#
# ip = IPAddress "224.0.0.0/4"
# ip.multicast?
# #=> true
#
def multicast?
[self.class.new("224.0.0.0/4")].any? {|i| i.include? self}
end
#
# Checks if an IPv4 address objects belongs
# to a loopback network RFC1122
#
# Example:
#
# ip = IPAddress "127.0.0.1"
# ip.loopback?
# #=> true
#
def loopback?
[self.class.new("127.0.0.0/8")].any? {|i| i.include? self}
end
#
# Returns the IP address in in-addr.arpa format
# for DNS lookups
#
# ip = IPAddress("172.16.100.50/24")
#
# ip.reverse
# #=> "50.100.16.172.in-addr.arpa"
#
def reverse
@octets.reverse.join(".") + ".in-addr.arpa"
end
alias_method :arpa, :reverse
#
# Return a list of IP's between @address
# and the supplied IP
#
# ip = IPAddress("172.16.100.51/32")
#
# ip.to("172.16.100.100")
# #=> ["172.16.100.51",
# #=> "172.16.100.52",
# #=> ...
# #=> "172.16.100.99",
# #=> "172.16.100.100"]
#
def to(e)
unless e.is_a? IPAddress::IPv4
e = IPv4.new(e)
end
Range.new(@u32, e.to_u32).map{|i| IPAddress.ntoa(i) }
end
#
# Splits a network into different subnets
#
# If the IP Address is a network, it can be divided into
# multiple networks. If +self+ is not a network, this
# method will calculate the network from the IP and then
# subnet it.
#
# If +subnets+ is an power of two number, the resulting
# networks will be divided evenly from the supernet.
#
# network = IPAddress("172.16.10.0/24")
#
# network / 4 # implies map{|i| i.to_string}
# #=> ["172.16.10.0/26",
# #=> "172.16.10.64/26",
# #=> "172.16.10.128/26",
# #=> "172.16.10.192/26"]
#
# If +num+ is any other number, the supernet will be
# divided into some networks with a even number of hosts and
# other networks with the remaining addresses.
#
# network = IPAddress("172.16.10.0/24")
#
# network / 3 # implies map{|i| i.to_string}
# #=> ["172.16.10.0/26",
# #=> "172.16.10.64/26",
# #=> "172.16.10.128/25"]
#
# Returns an array of IPv4 objects
#
def split(subnets=2)
unless (1..(2**@prefix.host_prefix)).include? subnets
raise ArgumentError, "Value #{subnets} out of range"
end
networks = subnet(newprefix(subnets))
until networks.size == subnets
networks = sum_first_found(networks)
end
return networks
end
alias_method :/, :split
#
# Returns a new IPv4 object from the supernetting
# of the instance network.
#
# Supernetting is similar to subnetting, except
# that you getting as a result a network with a
# smaller prefix (bigger host space). For example,
# given the network
#
# ip = IPAddress("172.16.10.0/24")
#
# you can supernet it with a new /23 prefix
#
# ip.supernet(23).to_string
# #=> "172.16.10.0/23"
#
# However if you supernet it with a /22 prefix, the
# network address will change:
#
# ip.supernet(22).to_string
# #=> "172.16.8.0/22"
#
# If +new_prefix+ is less than 1, returns 0.0.0.0/0
#
def supernet(new_prefix)
raise ArgumentError, "New prefix must be smaller than existing prefix" if new_prefix >= @prefix.to_i
return self.class.new("0.0.0.0/0") if new_prefix < 1
return self.class.new(@address+"/#{new_prefix}").network
end
#
# This method implements the subnetting function
# similar to the one described in RFC3531.
#
# By specifying a new prefix, the method calculates
# the network number for the given IPv4 object
# and calculates the subnets associated to the new
# prefix.
#
# For example, given the following network:
#
# ip = IPAddress "172.16.10.0/24"
#
# we can calculate the subnets with a /26 prefix
#
# ip.subnets(26).map{&:to_string)
# #=> ["172.16.10.0/26", "172.16.10.64/26",
# "172.16.10.128/26", "172.16.10.192/26"]
#
# The resulting number of subnets will of course always be
# a power of two.
#
def subnet(subprefix)
unless ((@prefix.to_i)..32).include? subprefix
raise ArgumentError, "New prefix must be between #@prefix and 32"
end
Array.new(2**(subprefix-@prefix.to_i)) do |i|
self.class.parse_u32(network_u32+(i*(2**(32-subprefix))), subprefix)
end
end
#
# Returns the difference between two IP addresses
# in unsigned int 32 bits format
#
# Example:
#
# ip1 = IPAddress("172.16.10.0/24")
# ip2 = IPAddress("172.16.11.0/24")
#
# puts ip1 - ip2
# #=> 256
#
def -(oth)
return (to_u32 - oth.to_u32).abs
end
#
# Returns a new IPv4 object which is the result
# of the summarization, if possible, of the two
# objects
#
# Example:
#
# ip1 = IPAddress("172.16.10.1/24")
# ip2 = IPAddress("172.16.11.2/24")
#
# p (ip1 + ip2).map {|i| i.to_string}
# #=> ["172.16.10.0/23"]
#
# If the networks are not contiguous, returns
# the two network numbers from the objects
#
# ip1 = IPAddress("10.0.0.1/24")
# ip2 = IPAddress("10.0.2.1/24")
#
# p (ip1 + ip2).map {|i| i.to_string}
# #=> ["10.0.0.0/24","10.0.2.0/24"]
#
def +(oth)
aggregate(*[self,oth].sort.map{|i| i.network})
end
#
# Checks whether the ip address belongs to a
# RFC 791 CLASS A network, no matter
# what the subnet mask is.
#
# Example:
#
# ip = IPAddress("10.0.0.1/24")
#
# ip.a?
# #=> true
#
def a?
CLASSFUL.key(8) === bits
end
#
# Checks whether the ip address belongs to a
# RFC 791 CLASS B network, no matter
# what the subnet mask is.
#
# Example:
#
# ip = IPAddress("172.16.10.1/24")
#
# ip.b?
# #=> true
#
def b?
CLASSFUL.key(16) === bits
end
#
# Checks whether the ip address belongs to a
# RFC 791 CLASS C network, no matter
# what the subnet mask is.
#
# Example:
#
# ip = IPAddress("192.168.1.1/30")
#
# ip.c?
# #=> true
#
def c?
CLASSFUL.key(24) === bits
end
#
# Return the ip address in a format compatible
# with the IPv6 Mapped IPv4 addresses
#
# Example:
#
# ip = IPAddress("172.16.10.1/24")
#
# ip.to_ipv6
# #=> "ac10:0a01"
#
def to_ipv6
"%.4x:%.4x" % [to_u32].pack("N").unpack("nn")
end
#
# Creates a new IPv4 object from an
# unsigned 32bits integer.
#
# ip = IPAddress::IPv4::parse_u32(167772160)
#
# ip.prefix = 8
# ip.to_string
# #=> "10.0.0.0/8"
#
# The +prefix+ parameter is optional:
#
# ip = IPAddress::IPv4::parse_u32(167772160, 8)
#
# ip.to_string
# #=> "10.0.0.0/8"
#
def self.parse_u32(u32, prefix=32)
self.new([u32].pack("N").unpack("C4").join(".")+"/#{prefix}")
end
#
# Creates a new IPv4 object from binary data,
# like the one you get from a network stream.
#
# For example, on a network stream the IP 172.16.0.1
# is represented with the binary "\254\020\n\001".
#
# ip = IPAddress::IPv4::parse_data "\254\020\n\001"
# ip.prefix = 24
#
# ip.to_string
# #=> "172.16.10.1/24"
#
def self.parse_data(str, prefix=32)
self.new(str.unpack("C4").join(".")+"/#{prefix}")
end
#
# Extract an IPv4 address from a string and
# returns a new object
#
# Example:
#
# str = "foobar172.16.10.1barbaz"
# ip = IPAddress::IPv4::extract str
#
# ip.to_s
# #=> "172.16.10.1"
#
def self.extract(str)
self.new REGEXP.match(str).to_s
end
#
# Summarization (or aggregation) is the process when two or more
# networks are taken together to check if a supernet, including all
# and only these networks, exists. If it exists then this supernet
# is called the summarized (or aggregated) network.
#
# It is very important to understand that summarization can only
# occur if there are no holes in the aggregated network, or, in other
# words, if the given networks fill completely the address space
# of the supernet. So the two rules are:
#
# 1) The aggregate network must contain +all+ the IP addresses of the
# original networks;
# 2) The aggregate network must contain +only+ the IP addresses of the
# original networks;
#
# A few examples will help clarify the above. Let's consider for
# instance the following two networks:
#
# ip1 = IPAddress("172.16.10.0/24")
# ip2 = IPAddress("172.16.11.0/24")
#
# These two networks can be expressed using only one IP address
# network if we change the prefix. Let Ruby do the work:
#
# IPAddress::IPv4::summarize(ip1,ip2).to_s
# #=> "172.16.10.0/23"
#
# We note how the network "172.16.10.0/23" includes all the addresses
# specified in the above networks, and (more important) includes
# ONLY those addresses.
#
# If we summarized +ip1+ and +ip2+ with the following network:
#
# "172.16.0.0/16"
#
# we would have satisfied rule #1 above, but not rule #2. So "172.16.0.0/16"
# is not an aggregate network for +ip1+ and +ip2+.
#
# If it's not possible to compute a single aggregated network for all the
# original networks, the method returns an array with all the aggregate
# networks found. For example, the following four networks can be
# aggregated in a single /22:
#
# ip1 = IPAddress("10.0.0.1/24")
# ip2 = IPAddress("10.0.1.1/24")
# ip3 = IPAddress("10.0.2.1/24")
# ip4 = IPAddress("10.0.3.1/24")
#
# IPAddress::IPv4::summarize(ip1,ip2,ip3,ip4).to_string
# #=> "10.0.0.0/22",
#
# But the following networks can't be summarized in a single network:
#
# ip1 = IPAddress("10.0.1.1/24")
# ip2 = IPAddress("10.0.2.1/24")
# ip3 = IPAddress("10.0.3.1/24")
# ip4 = IPAddress("10.0.4.1/24")
#
# IPAddress::IPv4::summarize(ip1,ip2,ip3,ip4).map{|i| i.to_string}
# #=> ["10.0.1.0/24","10.0.2.0/23","10.0.4.0/24"]
#
def self.summarize(*args)
# one network? no need to summarize
return [args.first.network] if args.size == 1
i = 0
result = args.dup.sort.map{|ip| ip.network}
while i < result.size-1
sum = result[i] + result[i+1]
result[i..i+1] = sum.first if sum.size == 1
i += 1
end
result.flatten!
if result.size == args.size
# nothing more to summarize
return result
else
# keep on summarizing
return self.summarize(*result)
end
end
#
# Creates a new IPv4 address object by parsing the
# address in a classful way.
#
# Classful addresses have a fixed netmask based on the
# class they belong to:
#
# * Class A, from 0.0.0.0 to 127.255.255.255
# * Class B, from 128.0.0.0 to 191.255.255.255
# * Class C, D and E, from 192.0.0.0 to 255.255.255.254
#
# Example:
#
# ip = IPAddress::IPv4.parse_classful "10.0.0.1"
#
# ip.netmask
# #=> "255.0.0.0"
# ip.a?
# #=> true
#
# Note that classes C, D and E will all have a default
# prefix of /24 or 255.255.255.0
#
def self.parse_classful(ip)
if IPAddress.valid_ipv4?(ip)
address = ip.strip
else
raise ArgumentError, "Invalid IP #{ip.inspect}"
end
prefix = CLASSFUL.find{|h,k| h === ("%.8b" % address.to_i)}.last
self.new "#{address}/#{prefix}"
end
#
# private methods
#
private
# Tweaked to remove the #upto(32)
def newprefix(num)
return @prefix + (Math::log2(num).ceil )
end
def sum_first_found(arr)
dup = arr.dup.reverse
dup.each_with_index do |obj,i|
a = [self.class.summarize(obj,dup[i+1])].flatten
if a.size == 1
dup[i..i+1] = a
return dup.reverse
end
end
return dup.reverse
end
def aggregate(ip1,ip2)
return [ip1] if ip1.include? ip2
snet = ip1.supernet(ip1.prefix-1)
if snet.include_all?(ip1, ip2) && ((ip1.size + ip2.size) == snet.size)
return [snet]
else
return [ip1, ip2]
end
end
end # class IPv4
end # module IPAddress
|