1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
---
:name: cgegs
:md5sum: 0d915b089b60c924c71d32fe45a153c2
:category: :subroutine
:arguments:
- jobvsl:
:type: char
:intent: input
- jobvsr:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: complex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- b:
:type: complex
:intent: input/output
:dims:
- ldb
- n
- ldb:
:type: integer
:intent: input
- alpha:
:type: complex
:intent: output
:dims:
- n
- beta:
:type: complex
:intent: output
:dims:
- n
- vsl:
:type: complex
:intent: output
:dims:
- ldvsl
- n
- ldvsl:
:type: integer
:intent: input
- vsr:
:type: complex
:intent: output
:dims:
- ldvsr
- n
- ldvsr:
:type: integer
:intent: input
- work:
:type: complex
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: 2*n
- rwork:
:type: real
:intent: workspace
:dims:
- 3*n
- info:
:type: integer
:intent: output
:substitutions:
ldvsl: "lsame_(&jobvsl,\"V\") ? n : 1"
ldvsr: "lsame_(&jobvsr,\"V\") ? n : 1"
:fortran_help: " SUBROUTINE CGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* This routine is deprecated and has been replaced by routine CGGES.\n\
*\n\
* CGEGS computes the eigenvalues, Schur form, and, optionally, the\n\
* left and or/right Schur vectors of a complex matrix pair (A,B).\n\
* Given two square matrices A and B, the generalized Schur\n\
* factorization has the form\n\
* \n\
* A = Q*S*Z**H, B = Q*T*Z**H\n\
* \n\
* where Q and Z are unitary matrices and S and T are upper triangular.\n\
* The columns of Q are the left Schur vectors\n\
* and the columns of Z are the right Schur vectors.\n\
* \n\
* If only the eigenvalues of (A,B) are needed, the driver routine\n\
* CGEGV should be used instead. See CGEGV for a description of the\n\
* eigenvalues of the generalized nonsymmetric eigenvalue problem\n\
* (GNEP).\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBVSL (input) CHARACTER*1\n\
* = 'N': do not compute the left Schur vectors;\n\
* = 'V': compute the left Schur vectors (returned in VSL).\n\
*\n\
* JOBVSR (input) CHARACTER*1\n\
* = 'N': do not compute the right Schur vectors;\n\
* = 'V': compute the right Schur vectors (returned in VSR).\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices A, B, VSL, and VSR. N >= 0.\n\
*\n\
* A (input/output) COMPLEX array, dimension (LDA, N)\n\
* On entry, the matrix A.\n\
* On exit, the upper triangular matrix S from the generalized\n\
* Schur factorization.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of A. LDA >= max(1,N).\n\
*\n\
* B (input/output) COMPLEX array, dimension (LDB, N)\n\
* On entry, the matrix B.\n\
* On exit, the upper triangular matrix T from the generalized\n\
* Schur factorization.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of B. LDB >= max(1,N).\n\
*\n\
* ALPHA (output) COMPLEX array, dimension (N)\n\
* The complex scalars alpha that define the eigenvalues of\n\
* GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur\n\
* form of A.\n\
*\n\
* BETA (output) COMPLEX array, dimension (N)\n\
* The non-negative real scalars beta that define the\n\
* eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element\n\
* of the triangular factor T.\n\
*\n\
* Together, the quantities alpha = ALPHA(j) and beta = BETA(j)\n\
* represent the j-th eigenvalue of the matrix pair (A,B), in\n\
* one of the forms lambda = alpha/beta or mu = beta/alpha.\n\
* Since either lambda or mu may overflow, they should not,\n\
* in general, be computed.\n\
*\n\
* VSL (output) COMPLEX array, dimension (LDVSL,N)\n\
* If JOBVSL = 'V', the matrix of left Schur vectors Q.\n\
* Not referenced if JOBVSL = 'N'.\n\
*\n\
* LDVSL (input) INTEGER\n\
* The leading dimension of the matrix VSL. LDVSL >= 1, and\n\
* if JOBVSL = 'V', LDVSL >= N.\n\
*\n\
* VSR (output) COMPLEX array, dimension (LDVSR,N)\n\
* If JOBVSR = 'V', the matrix of right Schur vectors Z.\n\
* Not referenced if JOBVSR = 'N'.\n\
*\n\
* LDVSR (input) INTEGER\n\
* The leading dimension of the matrix VSR. LDVSR >= 1, and\n\
* if JOBVSR = 'V', LDVSR >= N.\n\
*\n\
* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK. LWORK >= max(1,2*N).\n\
* For good performance, LWORK must generally be larger.\n\
* To compute the optimal value of LWORK, call ILAENV to get\n\
* blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute:\n\
* NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR;\n\
* the optimal LWORK is N*(NB+1).\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* RWORK (workspace) REAL array, dimension (3*N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* =1,...,N:\n\
* The QZ iteration failed. (A,B) are not in Schur\n\
* form, but ALPHA(j) and BETA(j) should be correct for\n\
* j=INFO+1,...,N.\n\
* > N: errors that usually indicate LAPACK problems:\n\
* =N+1: error return from CGGBAL\n\
* =N+2: error return from CGEQRF\n\
* =N+3: error return from CUNMQR\n\
* =N+4: error return from CUNGQR\n\
* =N+5: error return from CGGHRD\n\
* =N+6: error return from CHGEQZ (other than failed\n\
* iteration)\n\
* =N+7: error return from CGGBAK (computing VSL)\n\
* =N+8: error return from CGGBAK (computing VSR)\n\
* =N+9: error return from CLASCL (various places)\n\
*\n\n\
* =====================================================================\n\
*\n"
|