File: dlatrz

package info (click to toggle)
ruby-lapack 1.5-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 28,336 kB
  • sloc: ansic: 190,568; ruby: 3,837; makefile: 4
file content (106 lines) | stat: -rw-r--r-- 3,496 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
--- 
:name: dlatrz
:md5sum: 29240b38847f5fec70a609188c5ec3c5
:category: :subroutine
:arguments: 
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- l: 
    :type: integer
    :intent: input
- a: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- tau: 
    :type: doublereal
    :intent: output
    :dims: 
    - m
- work: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - m
:substitutions: 
  m: lda
:fortran_help: "      SUBROUTINE DLATRZ( M, N, L, A, LDA, TAU, WORK )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix\n\
  *  [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z, by means\n\
  *  of orthogonal transformations.  Z is an (M+L)-by-(M+L) orthogonal\n\
  *  matrix and, R and A1 are M-by-M upper triangular matrices.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix A.  M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrix A.  N >= 0.\n\
  *\n\
  *  L       (input) INTEGER\n\
  *          The number of columns of the matrix A containing the\n\
  *          meaningful part of the Householder vectors. N-M >= L >= 0.\n\
  *\n\
  *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n\
  *          On entry, the leading M-by-N upper trapezoidal part of the\n\
  *          array A must contain the matrix to be factorized.\n\
  *          On exit, the leading M-by-M upper triangular part of A\n\
  *          contains the upper triangular matrix R, and elements N-L+1 to\n\
  *          N of the first M rows of A, with the array TAU, represent the\n\
  *          orthogonal matrix Z as a product of M elementary reflectors.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,M).\n\
  *\n\
  *  TAU     (output) DOUBLE PRECISION array, dimension (M)\n\
  *          The scalar factors of the elementary reflectors.\n\
  *\n\
  *  WORK    (workspace) DOUBLE PRECISION array, dimension (M)\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA\n\
  *\n\
  *  The factorization is obtained by Householder's method.  The kth\n\
  *  transformation matrix, Z( k ), which is used to introduce zeros into\n\
  *  the ( m - k + 1 )th row of A, is given in the form\n\
  *\n\
  *     Z( k ) = ( I     0   ),\n\
  *              ( 0  T( k ) )\n\
  *\n\
  *  where\n\
  *\n\
  *     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),\n\
  *                                                 (   0    )\n\
  *                                                 ( z( k ) )\n\
  *\n\
  *  tau is a scalar and z( k ) is an l element vector. tau and z( k )\n\
  *  are chosen to annihilate the elements of the kth row of A2.\n\
  *\n\
  *  The scalar tau is returned in the kth element of TAU and the vector\n\
  *  u( k ) in the kth row of A2, such that the elements of z( k ) are\n\
  *  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in\n\
  *  the upper triangular part of A1.\n\
  *\n\
  *  Z is given by\n\
  *\n\
  *     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).\n\
  *\n\
  *  =====================================================================\n\
  *\n"