File: dtgsy2

package info (click to toggle)
ruby-lapack 1.5-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 28,336 kB
  • sloc: ansic: 190,568; ruby: 3,837; makefile: 4
file content (252 lines) | stat: -rw-r--r-- 8,752 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
--- 
:name: dtgsy2
:md5sum: aac9343f26eb26fda333d93013fb1815
:category: :subroutine
:arguments: 
- trans: 
    :type: char
    :intent: input
- ijob: 
    :type: integer
    :intent: input
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublereal
    :intent: input
    :dims: 
    - lda
    - m
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: doublereal
    :intent: input
    :dims: 
    - ldb
    - n
- ldb: 
    :type: integer
    :intent: input
- c: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldc
    - n
- ldc: 
    :type: integer
    :intent: input
- d: 
    :type: doublereal
    :intent: input
    :dims: 
    - ldd
    - m
- ldd: 
    :type: integer
    :intent: input
- e: 
    :type: doublereal
    :intent: input
    :dims: 
    - lde
    - n
- lde: 
    :type: integer
    :intent: input
- f: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldf
    - n
- ldf: 
    :type: integer
    :intent: input
- scale: 
    :type: doublereal
    :intent: output
- rdsum: 
    :type: doublereal
    :intent: input/output
- rdscal: 
    :type: doublereal
    :intent: input/output
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - m+n+2
- pq: 
    :type: integer
    :intent: output
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, IWORK, PQ, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DTGSY2 solves the generalized Sylvester equation:\n\
  *\n\
  *              A * R - L * B = scale * C                (1)\n\
  *              D * R - L * E = scale * F,\n\
  *\n\
  *  using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices,\n\
  *  (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,\n\
  *  N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E)\n\
  *  must be in generalized Schur canonical form, i.e. A, B are upper\n\
  *  quasi triangular and D, E are upper triangular. The solution (R, L)\n\
  *  overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor\n\
  *  chosen to avoid overflow.\n\
  *\n\
  *  In matrix notation solving equation (1) corresponds to solve\n\
  *  Z*x = scale*b, where Z is defined as\n\
  *\n\
  *         Z = [ kron(In, A)  -kron(B', Im) ]             (2)\n\
  *             [ kron(In, D)  -kron(E', Im) ],\n\
  *\n\
  *  Ik is the identity matrix of size k and X' is the transpose of X.\n\
  *  kron(X, Y) is the Kronecker product between the matrices X and Y.\n\
  *  In the process of solving (1), we solve a number of such systems\n\
  *  where Dim(In), Dim(In) = 1 or 2.\n\
  *\n\
  *  If TRANS = 'T', solve the transposed system Z'*y = scale*b for y,\n\
  *  which is equivalent to solve for R and L in\n\
  *\n\
  *              A' * R  + D' * L   = scale *  C           (3)\n\
  *              R  * B' + L  * E'  = scale * -F\n\
  *\n\
  *  This case is used to compute an estimate of Dif[(A, D), (B, E)] =\n\
  *  sigma_min(Z) using reverse communicaton with DLACON.\n\
  *\n\
  *  DTGSY2 also (IJOB >= 1) contributes to the computation in DTGSYL\n\
  *  of an upper bound on the separation between to matrix pairs. Then\n\
  *  the input (A, D), (B, E) are sub-pencils of the matrix pair in\n\
  *  DTGSYL. See DTGSYL for details.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  TRANS   (input) CHARACTER*1\n\
  *          = 'N', solve the generalized Sylvester equation (1).\n\
  *          = 'T': solve the 'transposed' system (3).\n\
  *\n\
  *  IJOB    (input) INTEGER\n\
  *          Specifies what kind of functionality to be performed.\n\
  *          = 0: solve (1) only.\n\
  *          = 1: A contribution from this subsystem to a Frobenius\n\
  *               norm-based estimate of the separation between two matrix\n\
  *               pairs is computed. (look ahead strategy is used).\n\
  *          = 2: A contribution from this subsystem to a Frobenius\n\
  *               norm-based estimate of the separation between two matrix\n\
  *               pairs is computed. (DGECON on sub-systems is used.)\n\
  *          Not referenced if TRANS = 'T'.\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          On entry, M specifies the order of A and D, and the row\n\
  *          dimension of C, F, R and L.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          On entry, N specifies the order of B and E, and the column\n\
  *          dimension of C, F, R and L.\n\
  *\n\
  *  A       (input) DOUBLE PRECISION array, dimension (LDA, M)\n\
  *          On entry, A contains an upper quasi triangular matrix.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the matrix A. LDA >= max(1, M).\n\
  *\n\
  *  B       (input) DOUBLE PRECISION array, dimension (LDB, N)\n\
  *          On entry, B contains an upper quasi triangular matrix.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the matrix B. LDB >= max(1, N).\n\
  *\n\
  *  C       (input/output) DOUBLE PRECISION array, dimension (LDC, N)\n\
  *          On entry, C contains the right-hand-side of the first matrix\n\
  *          equation in (1).\n\
  *          On exit, if IJOB = 0, C has been overwritten by the\n\
  *          solution R.\n\
  *\n\
  *  LDC     (input) INTEGER\n\
  *          The leading dimension of the matrix C. LDC >= max(1, M).\n\
  *\n\
  *  D       (input) DOUBLE PRECISION array, dimension (LDD, M)\n\
  *          On entry, D contains an upper triangular matrix.\n\
  *\n\
  *  LDD     (input) INTEGER\n\
  *          The leading dimension of the matrix D. LDD >= max(1, M).\n\
  *\n\
  *  E       (input) DOUBLE PRECISION array, dimension (LDE, N)\n\
  *          On entry, E contains an upper triangular matrix.\n\
  *\n\
  *  LDE     (input) INTEGER\n\
  *          The leading dimension of the matrix E. LDE >= max(1, N).\n\
  *\n\
  *  F       (input/output) DOUBLE PRECISION array, dimension (LDF, N)\n\
  *          On entry, F contains the right-hand-side of the second matrix\n\
  *          equation in (1).\n\
  *          On exit, if IJOB = 0, F has been overwritten by the\n\
  *          solution L.\n\
  *\n\
  *  LDF     (input) INTEGER\n\
  *          The leading dimension of the matrix F. LDF >= max(1, M).\n\
  *\n\
  *  SCALE   (output) DOUBLE PRECISION\n\
  *          On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions\n\
  *          R and L (C and F on entry) will hold the solutions to a\n\
  *          slightly perturbed system but the input matrices A, B, D and\n\
  *          E have not been changed. If SCALE = 0, R and L will hold the\n\
  *          solutions to the homogeneous system with C = F = 0. Normally,\n\
  *          SCALE = 1.\n\
  *\n\
  *  RDSUM   (input/output) DOUBLE PRECISION\n\
  *          On entry, the sum of squares of computed contributions to\n\
  *          the Dif-estimate under computation by DTGSYL, where the\n\
  *          scaling factor RDSCAL (see below) has been factored out.\n\
  *          On exit, the corresponding sum of squares updated with the\n\
  *          contributions from the current sub-system.\n\
  *          If TRANS = 'T' RDSUM is not touched.\n\
  *          NOTE: RDSUM only makes sense when DTGSY2 is called by DTGSYL.\n\
  *\n\
  *  RDSCAL  (input/output) DOUBLE PRECISION\n\
  *          On entry, scaling factor used to prevent overflow in RDSUM.\n\
  *          On exit, RDSCAL is updated w.r.t. the current contributions\n\
  *          in RDSUM.\n\
  *          If TRANS = 'T', RDSCAL is not touched.\n\
  *          NOTE: RDSCAL only makes sense when DTGSY2 is called by\n\
  *                DTGSYL.\n\
  *\n\
  *  IWORK   (workspace) INTEGER array, dimension (M+N+2)\n\
  *\n\
  *  PQ      (output) INTEGER\n\
  *          On exit, the number of subsystems (of size 2-by-2, 4-by-4 and\n\
  *          8-by-8) solved by this routine.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          On exit, if INFO is set to\n\
  *            =0: Successful exit\n\
  *            <0: If INFO = -i, the i-th argument had an illegal value.\n\
  *            >0: The matrix pairs (A, D) and (B, E) have common or very\n\
  *                close eigenvalues.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n\
  *     Umea University, S-901 87 Umea, Sweden.\n\
  *\n\
  *  =====================================================================\n\
  *  Replaced various illegal calls to DCOPY by calls to DLASET.\n\
  *  Sven Hammarling, 27/5/02.\n\
  *\n"