File: sstebz

package info (click to toggle)
ruby-lapack 1.5-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 28,336 kB
  • sloc: ansic: 190,568; ruby: 3,837; makefile: 4
file content (229 lines) | stat: -rw-r--r-- 9,007 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
--- 
:name: sstebz
:md5sum: b5160a4860997c0b386672e043c097b0
:category: :subroutine
:arguments: 
- range: 
    :type: char
    :intent: input
- order: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- vl: 
    :type: real
    :intent: input
- vu: 
    :type: real
    :intent: input
- il: 
    :type: integer
    :intent: input
- iu: 
    :type: integer
    :intent: input
- abstol: 
    :type: real
    :intent: input
- d: 
    :type: real
    :intent: input
    :dims: 
    - n
- e: 
    :type: real
    :intent: input
    :dims: 
    - n-1
- m: 
    :type: integer
    :intent: output
- nsplit: 
    :type: integer
    :intent: output
- w: 
    :type: real
    :intent: output
    :dims: 
    - n
- iblock: 
    :type: integer
    :intent: output
    :dims: 
    - n
- isplit: 
    :type: integer
    :intent: output
    :dims: 
    - n
- work: 
    :type: real
    :intent: workspace
    :dims: 
    - 4*n
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - 3*n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE SSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SSTEBZ computes the eigenvalues of a symmetric tridiagonal\n\
  *  matrix T.  The user may ask for all eigenvalues, all eigenvalues\n\
  *  in the half-open interval (VL, VU], or the IL-th through IU-th\n\
  *  eigenvalues.\n\
  *\n\
  *  To avoid overflow, the matrix must be scaled so that its\n\
  *  largest element is no greater than overflow**(1/2) *\n\
  *  underflow**(1/4) in absolute value, and for greatest\n\
  *  accuracy, it should not be much smaller than that.\n\
  *\n\
  *  See W. Kahan \"Accurate Eigenvalues of a Symmetric Tridiagonal\n\
  *  Matrix\", Report CS41, Computer Science Dept., Stanford\n\
  *  University, July 21, 1966.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  RANGE   (input) CHARACTER*1\n\
  *          = 'A': (\"All\")   all eigenvalues will be found.\n\
  *          = 'V': (\"Value\") all eigenvalues in the half-open interval\n\
  *                           (VL, VU] will be found.\n\
  *          = 'I': (\"Index\") the IL-th through IU-th eigenvalues (of the\n\
  *                           entire matrix) will be found.\n\
  *\n\
  *  ORDER   (input) CHARACTER*1\n\
  *          = 'B': (\"By Block\") the eigenvalues will be grouped by\n\
  *                              split-off block (see IBLOCK, ISPLIT) and\n\
  *                              ordered from smallest to largest within\n\
  *                              the block.\n\
  *          = 'E': (\"Entire matrix\")\n\
  *                              the eigenvalues for the entire matrix\n\
  *                              will be ordered from smallest to\n\
  *                              largest.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the tridiagonal matrix T.  N >= 0.\n\
  *\n\
  *  VL      (input) REAL\n\
  *  VU      (input) REAL\n\
  *          If RANGE='V', the lower and upper bounds of the interval to\n\
  *          be searched for eigenvalues.  Eigenvalues less than or equal\n\
  *          to VL, or greater than VU, will not be returned.  VL < VU.\n\
  *          Not referenced if RANGE = 'A' or 'I'.\n\
  *\n\
  *  IL      (input) INTEGER\n\
  *  IU      (input) INTEGER\n\
  *          If RANGE='I', the indices (in ascending order) of the\n\
  *          smallest and largest eigenvalues to be returned.\n\
  *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.\n\
  *          Not referenced if RANGE = 'A' or 'V'.\n\
  *\n\
  *  ABSTOL  (input) REAL\n\
  *          The absolute tolerance for the eigenvalues.  An eigenvalue\n\
  *          (or cluster) is considered to be located if it has been\n\
  *          determined to lie in an interval whose width is ABSTOL or\n\
  *          less.  If ABSTOL is less than or equal to zero, then ULP*|T|\n\
  *          will be used, where |T| means the 1-norm of T.\n\
  *\n\
  *          Eigenvalues will be computed most accurately when ABSTOL is\n\
  *          set to twice the underflow threshold 2*SLAMCH('S'), not zero.\n\
  *\n\
  *  D       (input) REAL array, dimension (N)\n\
  *          The n diagonal elements of the tridiagonal matrix T.\n\
  *\n\
  *  E       (input) REAL array, dimension (N-1)\n\
  *          The (n-1) off-diagonal elements of the tridiagonal matrix T.\n\
  *\n\
  *  M       (output) INTEGER\n\
  *          The actual number of eigenvalues found. 0 <= M <= N.\n\
  *          (See also the description of INFO=2,3.)\n\
  *\n\
  *  NSPLIT  (output) INTEGER\n\
  *          The number of diagonal blocks in the matrix T.\n\
  *          1 <= NSPLIT <= N.\n\
  *\n\
  *  W       (output) REAL array, dimension (N)\n\
  *          On exit, the first M elements of W will contain the\n\
  *          eigenvalues.  (SSTEBZ may use the remaining N-M elements as\n\
  *          workspace.)\n\
  *\n\
  *  IBLOCK  (output) INTEGER array, dimension (N)\n\
  *          At each row/column j where E(j) is zero or small, the\n\
  *          matrix T is considered to split into a block diagonal\n\
  *          matrix.  On exit, if INFO = 0, IBLOCK(i) specifies to which\n\
  *          block (from 1 to the number of blocks) the eigenvalue W(i)\n\
  *          belongs.  (SSTEBZ may use the remaining N-M elements as\n\
  *          workspace.)\n\
  *\n\
  *  ISPLIT  (output) INTEGER array, dimension (N)\n\
  *          The splitting points, at which T breaks up into submatrices.\n\
  *          The first submatrix consists of rows/columns 1 to ISPLIT(1),\n\
  *          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),\n\
  *          etc., and the NSPLIT-th consists of rows/columns\n\
  *          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.\n\
  *          (Only the first NSPLIT elements will actually be used, but\n\
  *          since the user cannot know a priori what value NSPLIT will\n\
  *          have, N words must be reserved for ISPLIT.)\n\
  *\n\
  *  WORK    (workspace) REAL array, dimension (4*N)\n\
  *\n\
  *  IWORK   (workspace) INTEGER array, dimension (3*N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  some or all of the eigenvalues failed to converge or\n\
  *                were not computed:\n\
  *                =1 or 3: Bisection failed to converge for some\n\
  *                        eigenvalues; these eigenvalues are flagged by a\n\
  *                        negative block number.  The effect is that the\n\
  *                        eigenvalues may not be as accurate as the\n\
  *                        absolute and relative tolerances.  This is\n\
  *                        generally caused by unexpectedly inaccurate\n\
  *                        arithmetic.\n\
  *                =2 or 3: RANGE='I' only: Not all of the eigenvalues\n\
  *                        IL:IU were found.\n\
  *                        Effect: M < IU+1-IL\n\
  *                        Cause:  non-monotonic arithmetic, causing the\n\
  *                                Sturm sequence to be non-monotonic.\n\
  *                        Cure:   recalculate, using RANGE='A', and pick\n\
  *                                out eigenvalues IL:IU.  In some cases,\n\
  *                                increasing the PARAMETER \"FUDGE\" may\n\
  *                                make things work.\n\
  *                = 4:    RANGE='I', and the Gershgorin interval\n\
  *                        initially used was too small.  No eigenvalues\n\
  *                        were computed.\n\
  *                        Probable cause: your machine has sloppy\n\
  *                                        floating-point arithmetic.\n\
  *                        Cure: Increase the PARAMETER \"FUDGE\",\n\
  *                              recompile, and try again.\n\
  *\n\
  *  Internal Parameters\n\
  *  ===================\n\
  *\n\
  *  RELFAC  REAL, default = 2.0e0\n\
  *          The relative tolerance.  An interval (a,b] lies within\n\
  *          \"relative tolerance\" if  b-a < RELFAC*ulp*max(|a|,|b|),\n\
  *          where \"ulp\" is the machine precision (distance from 1 to\n\
  *          the next larger floating point number.)\n\
  *\n\
  *  FUDGE   REAL, default = 2\n\
  *          A \"fudge factor\" to widen the Gershgorin intervals.  Ideally,\n\
  *          a value of 1 should work, but on machines with sloppy\n\
  *          arithmetic, this needs to be larger.  The default for\n\
  *          publicly released versions should be large enough to handle\n\
  *          the worst machine around.  Note that this has no effect\n\
  *          on accuracy of the solution.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"