1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
---
:name: zcposv
:md5sum: f63123d92c2b19650e7f886a8530407f
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- nrhs:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- b:
:type: doublecomplex
:intent: input
:dims:
- ldb
- nrhs
- ldb:
:type: integer
:intent: input
- x:
:type: doublecomplex
:intent: output
:dims:
- ldx
- nrhs
- ldx:
:type: integer
:intent: input
- work:
:type: doublecomplex
:intent: workspace
:dims:
- n*nrhs
- swork:
:type: complex
:intent: workspace
:dims:
- n*(n+nrhs)
- rwork:
:type: doublereal
:intent: workspace
:dims:
- n
- iter:
:type: integer
:intent: output
- info:
:type: integer
:intent: output
:substitutions:
ldx: MAX(1,n)
:fortran_help: " SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK, SWORK, RWORK, ITER, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZCPOSV computes the solution to a complex system of linear equations\n\
* A * X = B,\n\
* where A is an N-by-N Hermitian positive definite matrix and X and B\n\
* are N-by-NRHS matrices.\n\
*\n\
* ZCPOSV first attempts to factorize the matrix in COMPLEX and use this\n\
* factorization within an iterative refinement procedure to produce a\n\
* solution with COMPLEX*16 normwise backward error quality (see below).\n\
* If the approach fails the method switches to a COMPLEX*16\n\
* factorization and solve.\n\
*\n\
* The iterative refinement is not going to be a winning strategy if\n\
* the ratio COMPLEX performance over COMPLEX*16 performance is too\n\
* small. A reasonable strategy should take the number of right-hand\n\
* sides and the size of the matrix into account. This might be done\n\
* with a call to ILAENV in the future. Up to now, we always try\n\
* iterative refinement.\n\
*\n\
* The iterative refinement process is stopped if\n\
* ITER > ITERMAX\n\
* or for all the RHS we have:\n\
* RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX\n\
* where\n\
* o ITER is the number of the current iteration in the iterative\n\
* refinement process\n\
* o RNRM is the infinity-norm of the residual\n\
* o XNRM is the infinity-norm of the solution\n\
* o ANRM is the infinity-operator-norm of the matrix A\n\
* o EPS is the machine epsilon returned by DLAMCH('Epsilon')\n\
* The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00\n\
* respectively.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The number of linear equations, i.e., the order of the\n\
* matrix A. N >= 0.\n\
*\n\
* NRHS (input) INTEGER\n\
* The number of right hand sides, i.e., the number of columns\n\
* of the matrix B. NRHS >= 0.\n\
*\n\
* A (input/output) COMPLEX*16 array,\n\
* dimension (LDA,N)\n\
* On entry, the Hermitian matrix A. If UPLO = 'U', the leading\n\
* N-by-N upper triangular part of A contains the upper\n\
* triangular part of the matrix A, and the strictly lower\n\
* triangular part of A is not referenced. If UPLO = 'L', the\n\
* leading N-by-N lower triangular part of A contains the lower\n\
* triangular part of the matrix A, and the strictly upper\n\
* triangular part of A is not referenced.\n\
*\n\
* Note that the imaginary parts of the diagonal\n\
* elements need not be set and are assumed to be zero.\n\
*\n\
* On exit, if iterative refinement has been successfully used\n\
* (INFO.EQ.0 and ITER.GE.0, see description below), then A is\n\
* unchanged, if double precision factorization has been used\n\
* (INFO.EQ.0 and ITER.LT.0, see description below), then the\n\
* array A contains the factor U or L from the Cholesky\n\
* factorization A = U**H*U or A = L*L**H.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* B (input) COMPLEX*16 array, dimension (LDB,NRHS)\n\
* The N-by-NRHS right hand side matrix B.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* X (output) COMPLEX*16 array, dimension (LDX,NRHS)\n\
* If INFO = 0, the N-by-NRHS solution matrix X.\n\
*\n\
* LDX (input) INTEGER\n\
* The leading dimension of the array X. LDX >= max(1,N).\n\
*\n\
* WORK (workspace) COMPLEX*16 array, dimension (N*NRHS)\n\
* This array is used to hold the residual vectors.\n\
*\n\
* SWORK (workspace) COMPLEX array, dimension (N*(N+NRHS))\n\
* This array is used to use the single precision matrix and the\n\
* right-hand sides or solutions in single precision.\n\
*\n\
* RWORK (workspace) DOUBLE PRECISION array, dimension (N)\n\
*\n\
* ITER (output) INTEGER\n\
* < 0: iterative refinement has failed, COMPLEX*16\n\
* factorization has been performed\n\
* -1 : the routine fell back to full precision for\n\
* implementation- or machine-specific reasons\n\
* -2 : narrowing the precision induced an overflow,\n\
* the routine fell back to full precision\n\
* -3 : failure of CPOTRF\n\
* -31: stop the iterative refinement after the 30th\n\
* iterations\n\
* > 0: iterative refinement has been sucessfully used.\n\
* Returns the number of iterations\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, the leading minor of order i of\n\
* (COMPLEX*16) A is not positive definite, so the\n\
* factorization could not be completed, and the solution\n\
* has not been computed.\n\
*\n\
* =========\n\
*\n"
|