| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 
 | --- 
:name: zla_gbrpvgrw
:md5sum: 93b4b0e0e44371aacf2dcc4f944acec7
:category: :function
:type: doublereal
:arguments: 
- n: 
    :type: integer
    :intent: input
- kl: 
    :type: integer
    :intent: input
- ku: 
    :type: integer
    :intent: input
- ncols: 
    :type: integer
    :intent: input
- ab: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - ldab
    - n
- ldab: 
    :type: integer
    :intent: input
- afb: 
    :type: doublecomplex
    :intent: input
    :dims: 
    - ldafb
    - n
- ldafb: 
    :type: integer
    :intent: input
:substitutions: {}
:fortran_help: "      DOUBLE PRECISION FUNCTION ZLA_GBRPVGRW( N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  ZLA_GBRPVGRW computes the reciprocal pivot growth factor\n\
  *  norm(A)/norm(U). The \"max absolute element\" norm is used. If this is\n\
  *  much less than 1, the stability of the LU factorization of the\n\
  *  (equilibrated) matrix A could be poor. This also means that the\n\
  *  solution X, estimated condition numbers, and error bounds could be\n\
  *  unreliable.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *     N       (input) INTEGER\n\
  *     The number of linear equations, i.e., the order of the\n\
  *     matrix A.  N >= 0.\n\
  *\n\
  *     KL      (input) INTEGER\n\
  *     The number of subdiagonals within the band of A.  KL >= 0.\n\
  *\n\
  *     KU      (input) INTEGER\n\
  *     The number of superdiagonals within the band of A.  KU >= 0.\n\
  *\n\
  *     NCOLS   (input) INTEGER\n\
  *     The number of columns of the matrix A.  NCOLS >= 0.\n\
  *\n\
  *     AB      (input) COMPLEX*16 array, dimension (LDAB,N)\n\
  *     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.\n\
  *     The j-th column of A is stored in the j-th column of the\n\
  *     array AB as follows:\n\
  *     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)\n\
  *\n\
  *     LDAB    (input) INTEGER\n\
  *     The leading dimension of the array AB.  LDAB >= KL+KU+1.\n\
  *\n\
  *     AFB     (input) COMPLEX*16 array, dimension (LDAFB,N)\n\
  *     Details of the LU factorization of the band matrix A, as\n\
  *     computed by ZGBTRF.  U is stored as an upper triangular\n\
  *     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,\n\
  *     and the multipliers used during the factorization are stored\n\
  *     in rows KL+KU+2 to 2*KL+KU+1.\n\
  *\n\
  *     LDAFB   (input) INTEGER\n\
  *     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n\
  *     .. Local Scalars ..\n      INTEGER            I, J, KD\n      DOUBLE PRECISION   AMAX, UMAX, RPVGRW\n      COMPLEX*16         ZDUM\n\
  *     ..\n\
  *     .. Intrinsic Functions ..\n      INTRINSIC          ABS, MAX, MIN, REAL, DIMAG\n\
  *     ..\n\
  *     .. Statement Functions ..\n      DOUBLE PRECISION   CABS1\n\
  *     ..\n\
  *     .. Statement Function Definitions ..\n      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )\n\
  *     ..\n"
 |