1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
---
:name: ztrsyl
:md5sum: b74a0884c540a69b1720f8f96006957c
:category: :subroutine
:arguments:
- trana:
:type: char
:intent: input
- tranb:
:type: char
:intent: input
- isgn:
:type: integer
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input
:dims:
- lda
- m
- lda:
:type: integer
:intent: input
- b:
:type: doublecomplex
:intent: input
:dims:
- ldb
- n
- ldb:
:type: integer
:intent: input
- c:
:type: doublecomplex
:intent: input/output
:dims:
- ldc
- n
- ldc:
:type: integer
:intent: input
- scale:
:type: doublereal
:intent: output
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC, SCALE, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZTRSYL solves the complex Sylvester matrix equation:\n\
*\n\
* op(A)*X + X*op(B) = scale*C or\n\
* op(A)*X - X*op(B) = scale*C,\n\
*\n\
* where op(A) = A or A**H, and A and B are both upper triangular. A is\n\
* M-by-M and B is N-by-N; the right hand side C and the solution X are\n\
* M-by-N; and scale is an output scale factor, set <= 1 to avoid\n\
* overflow in X.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* TRANA (input) CHARACTER*1\n\
* Specifies the option op(A):\n\
* = 'N': op(A) = A (No transpose)\n\
* = 'C': op(A) = A**H (Conjugate transpose)\n\
*\n\
* TRANB (input) CHARACTER*1\n\
* Specifies the option op(B):\n\
* = 'N': op(B) = B (No transpose)\n\
* = 'C': op(B) = B**H (Conjugate transpose)\n\
*\n\
* ISGN (input) INTEGER\n\
* Specifies the sign in the equation:\n\
* = +1: solve op(A)*X + X*op(B) = scale*C\n\
* = -1: solve op(A)*X - X*op(B) = scale*C\n\
*\n\
* M (input) INTEGER\n\
* The order of the matrix A, and the number of rows in the\n\
* matrices X and C. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix B, and the number of columns in the\n\
* matrices X and C. N >= 0.\n\
*\n\
* A (input) COMPLEX*16 array, dimension (LDA,M)\n\
* The upper triangular matrix A.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* B (input) COMPLEX*16 array, dimension (LDB,N)\n\
* The upper triangular matrix B.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* C (input/output) COMPLEX*16 array, dimension (LDC,N)\n\
* On entry, the M-by-N right hand side matrix C.\n\
* On exit, C is overwritten by the solution matrix X.\n\
*\n\
* LDC (input) INTEGER\n\
* The leading dimension of the array C. LDC >= max(1,M)\n\
*\n\
* SCALE (output) DOUBLE PRECISION\n\
* The scale factor, scale, set <= 1 to avoid overflow in X.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* = 1: A and B have common or very close eigenvalues; perturbed\n\
* values were used to solve the equation (but the matrices\n\
* A and B are unchanged).\n\
*\n\n\
* =====================================================================\n\
*\n"
|