File: cla_gbrpvgrw

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (94 lines) | stat: -rw-r--r-- 3,080 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
--- 
:name: cla_gbrpvgrw
:md5sum: 6ebe3ad7622d703a0633348eddaf80d8
:category: :function
:type: real
:arguments: 
- n: 
    :type: integer
    :intent: input
- kl: 
    :type: integer
    :intent: input
- ku: 
    :type: integer
    :intent: input
- ncols: 
    :type: integer
    :intent: input
- ab: 
    :type: complex
    :intent: input
    :dims: 
    - ldab
    - n
- ldab: 
    :type: integer
    :intent: input
- afb: 
    :type: complex
    :intent: input
    :dims: 
    - ldafb
    - n
- ldafb: 
    :type: integer
    :intent: input
:substitutions: {}

:fortran_help: "      REAL FUNCTION CLA_GBRPVGRW( N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CLA_GBRPVGRW computes the reciprocal pivot growth factor\n\
  *  norm(A)/norm(U). The \"max absolute element\" norm is used. If this is\n\
  *  much less than 1, the stability of the LU factorization of the\n\
  *  (equilibrated) matrix A could be poor. This also means that the\n\
  *  solution X, estimated condition numbers, and error bounds could be\n\
  *  unreliable.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *     N       (input) INTEGER\n\
  *     The number of linear equations, i.e., the order of the\n\
  *     matrix A.  N >= 0.\n\
  *\n\
  *     KL      (input) INTEGER\n\
  *     The number of subdiagonals within the band of A.  KL >= 0.\n\
  *\n\
  *     KU      (input) INTEGER\n\
  *     The number of superdiagonals within the band of A.  KU >= 0.\n\
  *\n\
  *     NCOLS   (input) INTEGER\n\
  *     The number of columns of the matrix A.  NCOLS >= 0.\n\
  *\n\
  *     AB      (input) COMPLEX array, dimension (LDAB,N)\n\
  *     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.\n\
  *     The j-th column of A is stored in the j-th column of the\n\
  *     array AB as follows:\n\
  *     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)\n\
  *\n\
  *     LDAB    (input) INTEGER\n\
  *     The leading dimension of the array AB.  LDAB >= KL+KU+1.\n\
  *\n\
  *     AFB     (input) COMPLEX array, dimension (LDAFB,N)\n\
  *     Details of the LU factorization of the band matrix A, as\n\
  *     computed by CGBTRF.  U is stored as an upper triangular\n\
  *     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,\n\
  *     and the multipliers used during the factorization are stored\n\
  *     in rows KL+KU+2 to 2*KL+KU+1.\n\
  *\n\
  *     LDAFB   (input) INTEGER\n\
  *     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n\
  *     .. Local Scalars ..\n      INTEGER            I, J, KD\n      REAL               AMAX, UMAX, RPVGRW\n      COMPLEX            ZDUM\n\
  *     ..\n\
  *     .. Intrinsic Functions ..\n      INTRINSIC          ABS, MAX, MIN, REAL, AIMAG\n\
  *     ..\n\
  *     .. Statement Functions ..\n      REAL               CABS1\n\
  *     ..\n\
  *     .. Statement Function Definitions ..\n      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )\n\
  *     ..\n"