File: cla_rpvgrw

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (76 lines) | stat: -rw-r--r-- 2,311 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
--- 
:name: cla_rpvgrw
:md5sum: 6ea05cda1b7eeeb5b354576bf4a33b68
:category: :function
:type: real
:arguments: 
- n: 
    :type: integer
    :intent: input
- ncols: 
    :type: integer
    :intent: input
- a: 
    :type: complex
    :intent: input
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- af: 
    :type: complex
    :intent: input
    :dims: 
    - ldaf
    - n
- ldaf: 
    :type: integer
    :intent: input
:substitutions: {}

:fortran_help: "      REAL FUNCTION CLA_RPVGRW( N, NCOLS, A, LDA, AF, LDAF )\n\n\
  *  Purpose\n\
  *  =======\n\
  * \n\
  *  CLA_RPVGRW computes the reciprocal pivot growth factor\n\
  *  norm(A)/norm(U). The \"max absolute element\" norm is used. If this is\n\
  *  much less than 1, the stability of the LU factorization of the\n\
  *  (equilibrated) matrix A could be poor. This also means that the\n\
  *  solution X, estimated condition numbers, and error bounds could be\n\
  *  unreliable.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *     N       (input) INTEGER\n\
  *     The number of linear equations, i.e., the order of the\n\
  *     matrix A.  N >= 0.\n\
  *\n\
  *     NCOLS   (input) INTEGER\n\
  *     The number of columns of the matrix A. NCOLS >= 0.\n\
  *\n\
  *     A       (input) COMPLEX array, dimension (LDA,N)\n\
  *     On entry, the N-by-N matrix A.\n\
  *\n\
  *     LDA     (input) INTEGER\n\
  *     The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *     AF      (input) COMPLEX array, dimension (LDAF,N)\n\
  *     The factors L and U from the factorization\n\
  *     A = P*L*U as computed by CGETRF.\n\
  *\n\
  *     LDAF    (input) INTEGER\n\
  *     The leading dimension of the array AF.  LDAF >= max(1,N).\n\
  *\n\n\
  *  =====================================================================\n\
  *\n\
  *     .. Local Scalars ..\n      INTEGER            I, J\n      REAL               AMAX, UMAX, RPVGRW\n      COMPLEX            ZDUM\n\
  *     ..\n\
  *     .. Intrinsic Functions ..\n      INTRINSIC          MAX, MIN, ABS, REAL, AIMAG\n\
  *     ..\n\
  *     .. Statement Functions ..\n      REAL               CABS1\n\
  *     ..\n\
  *     .. Statement Function Definitions ..\n      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )\n\
  *     ..\n"