File: ctgsyl

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (273 lines) | stat: -rw-r--r-- 9,488 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
--- 
:name: ctgsyl
:md5sum: 353e93545b3d9d5928409ecbfb8864c2
:category: :subroutine
:arguments: 
- trans: 
    :type: char
    :intent: input
- ijob: 
    :type: integer
    :intent: input
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: complex
    :intent: input
    :dims: 
    - lda
    - m
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: complex
    :intent: input
    :dims: 
    - ldb
    - n
- ldb: 
    :type: integer
    :intent: input
- c: 
    :type: complex
    :intent: input/output
    :dims: 
    - ldc
    - n
- ldc: 
    :type: integer
    :intent: input
- d: 
    :type: complex
    :intent: input
    :dims: 
    - ldd
    - m
- ldd: 
    :type: integer
    :intent: input
- e: 
    :type: complex
    :intent: input
    :dims: 
    - lde
    - n
- lde: 
    :type: integer
    :intent: input
- f: 
    :type: complex
    :intent: input/output
    :dims: 
    - ldf
    - n
- ldf: 
    :type: integer
    :intent: input
- scale: 
    :type: real
    :intent: output
- dif: 
    :type: real
    :intent: output
- work: 
    :type: complex
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: "((ijob==1||ijob==2)&&lsame_(&trans,\"N\")) ? 2*m*n : 1"
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - m+n+2
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE CTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CTGSYL solves the generalized Sylvester equation:\n\
  *\n\
  *              A * R - L * B = scale * C            (1)\n\
  *              D * R - L * E = scale * F\n\
  *\n\
  *  where R and L are unknown m-by-n matrices, (A, D), (B, E) and\n\
  *  (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,\n\
  *  respectively, with complex entries. A, B, D and E are upper\n\
  *  triangular (i.e., (A,D) and (B,E) in generalized Schur form).\n\
  *\n\
  *  The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1\n\
  *  is an output scaling factor chosen to avoid overflow.\n\
  *\n\
  *  In matrix notation (1) is equivalent to solve Zx = scale*b, where Z\n\
  *  is defined as\n\
  *\n\
  *         Z = [ kron(In, A)  -kron(B', Im) ]        (2)\n\
  *             [ kron(In, D)  -kron(E', Im) ],\n\
  *\n\
  *  Here Ix is the identity matrix of size x and X' is the conjugate\n\
  *  transpose of X. Kron(X, Y) is the Kronecker product between the\n\
  *  matrices X and Y.\n\
  *\n\
  *  If TRANS = 'C', y in the conjugate transposed system Z'*y = scale*b\n\
  *  is solved for, which is equivalent to solve for R and L in\n\
  *\n\
  *              A' * R + D' * L = scale * C           (3)\n\
  *              R * B' + L * E' = scale * -F\n\
  *\n\
  *  This case (TRANS = 'C') is used to compute an one-norm-based estimate\n\
  *  of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)\n\
  *  and (B,E), using CLACON.\n\
  *\n\
  *  If IJOB >= 1, CTGSYL computes a Frobenius norm-based estimate of\n\
  *  Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the\n\
  *  reciprocal of the smallest singular value of Z.\n\
  *\n\
  *  This is a level-3 BLAS algorithm.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  TRANS   (input) CHARACTER*1\n\
  *          = 'N': solve the generalized sylvester equation (1).\n\
  *          = 'C': solve the \"conjugate transposed\" system (3).\n\
  *\n\
  *  IJOB    (input) INTEGER\n\
  *          Specifies what kind of functionality to be performed.\n\
  *          =0: solve (1) only.\n\
  *          =1: The functionality of 0 and 3.\n\
  *          =2: The functionality of 0 and 4.\n\
  *          =3: Only an estimate of Dif[(A,D), (B,E)] is computed.\n\
  *              (look ahead strategy is used).\n\
  *          =4: Only an estimate of Dif[(A,D), (B,E)] is computed.\n\
  *              (CGECON on sub-systems is used).\n\
  *          Not referenced if TRANS = 'C'.\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The order of the matrices A and D, and the row dimension of\n\
  *          the matrices C, F, R and L.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrices B and E, and the column dimension\n\
  *          of the matrices C, F, R and L.\n\
  *\n\
  *  A       (input) COMPLEX array, dimension (LDA, M)\n\
  *          The upper triangular matrix A.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A. LDA >= max(1, M).\n\
  *\n\
  *  B       (input) COMPLEX array, dimension (LDB, N)\n\
  *          The upper triangular matrix B.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B. LDB >= max(1, N).\n\
  *\n\
  *  C       (input/output) COMPLEX array, dimension (LDC, N)\n\
  *          On entry, C contains the right-hand-side of the first matrix\n\
  *          equation in (1) or (3).\n\
  *          On exit, if IJOB = 0, 1 or 2, C has been overwritten by\n\
  *          the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,\n\
  *          the solution achieved during the computation of the\n\
  *          Dif-estimate.\n\
  *\n\
  *  LDC     (input) INTEGER\n\
  *          The leading dimension of the array C. LDC >= max(1, M).\n\
  *\n\
  *  D       (input) COMPLEX array, dimension (LDD, M)\n\
  *          The upper triangular matrix D.\n\
  *\n\
  *  LDD     (input) INTEGER\n\
  *          The leading dimension of the array D. LDD >= max(1, M).\n\
  *\n\
  *  E       (input) COMPLEX array, dimension (LDE, N)\n\
  *          The upper triangular matrix E.\n\
  *\n\
  *  LDE     (input) INTEGER\n\
  *          The leading dimension of the array E. LDE >= max(1, N).\n\
  *\n\
  *  F       (input/output) COMPLEX array, dimension (LDF, N)\n\
  *          On entry, F contains the right-hand-side of the second matrix\n\
  *          equation in (1) or (3).\n\
  *          On exit, if IJOB = 0, 1 or 2, F has been overwritten by\n\
  *          the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,\n\
  *          the solution achieved during the computation of the\n\
  *          Dif-estimate.\n\
  *\n\
  *  LDF     (input) INTEGER\n\
  *          The leading dimension of the array F. LDF >= max(1, M).\n\
  *\n\
  *  DIF     (output) REAL\n\
  *          On exit DIF is the reciprocal of a lower bound of the\n\
  *          reciprocal of the Dif-function, i.e. DIF is an upper bound of\n\
  *          Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2).\n\
  *          IF IJOB = 0 or TRANS = 'C', DIF is not referenced.\n\
  *\n\
  *  SCALE   (output) REAL\n\
  *          On exit SCALE is the scaling factor in (1) or (3).\n\
  *          If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,\n\
  *          to a slightly perturbed system but the input matrices A, B,\n\
  *          D and E have not been changed. If SCALE = 0, R and L will\n\
  *          hold the solutions to the homogenious system with C = F = 0.\n\
  *\n\
  *  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The dimension of the array WORK. LWORK > = 1.\n\
  *          If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  IWORK   (workspace) INTEGER array, dimension (M+N+2)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *            =0: successful exit\n\
  *            <0: If INFO = -i, the i-th argument had an illegal value.\n\
  *            >0: (A, D) and (B, E) have common or very close\n\
  *                eigenvalues.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n\
  *     Umea University, S-901 87 Umea, Sweden.\n\
  *\n\
  *  [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software\n\
  *      for Solving the Generalized Sylvester Equation and Estimating the\n\
  *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,\n\
  *      Department of Computing Science, Umea University, S-901 87 Umea,\n\
  *      Sweden, December 1993, Revised April 1994, Also as LAPACK Working\n\
  *      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,\n\
  *      No 1, 1996.\n\
  *\n\
  *  [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester\n\
  *      Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.\n\
  *      Appl., 15(4):1045-1060, 1994.\n\
  *\n\
  *  [3] B. Kagstrom and L. Westin, Generalized Schur Methods with\n\
  *      Condition Estimators for Solving the Generalized Sylvester\n\
  *      Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,\n\
  *      July 1989, pp 745-751.\n\
  *\n\
  *  =====================================================================\n\
  *  Replaced various illegal calls to CCOPY by calls to CLASET.\n\
  *  Sven Hammarling, 1/5/02.\n\
  *\n"