File: ctrsna

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (223 lines) | stat: -rw-r--r-- 7,585 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
--- 
:name: ctrsna
:md5sum: e91cc890d0ea7dbba10a9adc422212aa
:category: :subroutine
:arguments: 
- job: 
    :type: char
    :intent: input
- howmny: 
    :type: char
    :intent: input
- select: 
    :type: logical
    :intent: input
    :dims: 
    - n
- n: 
    :type: integer
    :intent: input
- t: 
    :type: complex
    :intent: input
    :dims: 
    - ldt
    - n
- ldt: 
    :type: integer
    :intent: input
- vl: 
    :type: complex
    :intent: input
    :dims: 
    - ldvl
    - m
- ldvl: 
    :type: integer
    :intent: input
- vr: 
    :type: complex
    :intent: input
    :dims: 
    - ldvr
    - m
- ldvr: 
    :type: integer
    :intent: input
- s: 
    :type: real
    :intent: output
    :dims: 
    - mm
- sep: 
    :type: real
    :intent: output
    :dims: 
    - mm
- mm: 
    :type: integer
    :intent: input
- m: 
    :type: integer
    :intent: output
- work: 
    :type: complex
    :intent: workspace
    :dims: 
    - "lsame_(&job,\"E\") ? 0 : ldwork"
    - "lsame_(&job,\"E\") ? 0 : n+6"
- ldwork: 
    :type: integer
    :intent: input
- rwork: 
    :type: real
    :intent: workspace
    :dims: 
    - "lsame_(&job,\"E\") ? 0 : n"
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldwork: "((lsame_(&job,\"V\")) || (lsame_(&job,\"B\"))) ? n : 1"
  mm: m
:fortran_help: "      SUBROUTINE CTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CTRSNA estimates reciprocal condition numbers for specified\n\
  *  eigenvalues and/or right eigenvectors of a complex upper triangular\n\
  *  matrix T (or of any matrix Q*T*Q**H with Q unitary).\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOB     (input) CHARACTER*1\n\
  *          Specifies whether condition numbers are required for\n\
  *          eigenvalues (S) or eigenvectors (SEP):\n\
  *          = 'E': for eigenvalues only (S);\n\
  *          = 'V': for eigenvectors only (SEP);\n\
  *          = 'B': for both eigenvalues and eigenvectors (S and SEP).\n\
  *\n\
  *  HOWMNY  (input) CHARACTER*1\n\
  *          = 'A': compute condition numbers for all eigenpairs;\n\
  *          = 'S': compute condition numbers for selected eigenpairs\n\
  *                 specified by the array SELECT.\n\
  *\n\
  *  SELECT  (input) LOGICAL array, dimension (N)\n\
  *          If HOWMNY = 'S', SELECT specifies the eigenpairs for which\n\
  *          condition numbers are required. To select condition numbers\n\
  *          for the j-th eigenpair, SELECT(j) must be set to .TRUE..\n\
  *          If HOWMNY = 'A', SELECT is not referenced.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix T. N >= 0.\n\
  *\n\
  *  T       (input) COMPLEX array, dimension (LDT,N)\n\
  *          The upper triangular matrix T.\n\
  *\n\
  *  LDT     (input) INTEGER\n\
  *          The leading dimension of the array T. LDT >= max(1,N).\n\
  *\n\
  *  VL      (input) COMPLEX array, dimension (LDVL,M)\n\
  *          If JOB = 'E' or 'B', VL must contain left eigenvectors of T\n\
  *          (or of any Q*T*Q**H with Q unitary), corresponding to the\n\
  *          eigenpairs specified by HOWMNY and SELECT. The eigenvectors\n\
  *          must be stored in consecutive columns of VL, as returned by\n\
  *          CHSEIN or CTREVC.\n\
  *          If JOB = 'V', VL is not referenced.\n\
  *\n\
  *  LDVL    (input) INTEGER\n\
  *          The leading dimension of the array VL.\n\
  *          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.\n\
  *\n\
  *  VR      (input) COMPLEX array, dimension (LDVR,M)\n\
  *          If JOB = 'E' or 'B', VR must contain right eigenvectors of T\n\
  *          (or of any Q*T*Q**H with Q unitary), corresponding to the\n\
  *          eigenpairs specified by HOWMNY and SELECT. The eigenvectors\n\
  *          must be stored in consecutive columns of VR, as returned by\n\
  *          CHSEIN or CTREVC.\n\
  *          If JOB = 'V', VR is not referenced.\n\
  *\n\
  *  LDVR    (input) INTEGER\n\
  *          The leading dimension of the array VR.\n\
  *          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.\n\
  *\n\
  *  S       (output) REAL array, dimension (MM)\n\
  *          If JOB = 'E' or 'B', the reciprocal condition numbers of the\n\
  *          selected eigenvalues, stored in consecutive elements of the\n\
  *          array. Thus S(j), SEP(j), and the j-th columns of VL and VR\n\
  *          all correspond to the same eigenpair (but not in general the\n\
  *          j-th eigenpair, unless all eigenpairs are selected).\n\
  *          If JOB = 'V', S is not referenced.\n\
  *\n\
  *  SEP     (output) REAL array, dimension (MM)\n\
  *          If JOB = 'V' or 'B', the estimated reciprocal condition\n\
  *          numbers of the selected eigenvectors, stored in consecutive\n\
  *          elements of the array.\n\
  *          If JOB = 'E', SEP is not referenced.\n\
  *\n\
  *  MM      (input) INTEGER\n\
  *          The number of elements in the arrays S (if JOB = 'E' or 'B')\n\
  *           and/or SEP (if JOB = 'V' or 'B'). MM >= M.\n\
  *\n\
  *  M       (output) INTEGER\n\
  *          The number of elements of the arrays S and/or SEP actually\n\
  *          used to store the estimated condition numbers.\n\
  *          If HOWMNY = 'A', M is set to N.\n\
  *\n\
  *  WORK    (workspace) COMPLEX array, dimension (LDWORK,N+6)\n\
  *          If JOB = 'E', WORK is not referenced.\n\
  *\n\
  *  LDWORK  (input) INTEGER\n\
  *          The leading dimension of the array WORK.\n\
  *          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.\n\
  *\n\
  *  RWORK   (workspace) REAL array, dimension (N)\n\
  *          If JOB = 'E', RWORK is not referenced.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The reciprocal of the condition number of an eigenvalue lambda is\n\
  *  defined as\n\
  *\n\
  *          S(lambda) = |v'*u| / (norm(u)*norm(v))\n\
  *\n\
  *  where u and v are the right and left eigenvectors of T corresponding\n\
  *  to lambda; v' denotes the conjugate transpose of v, and norm(u)\n\
  *  denotes the Euclidean norm. These reciprocal condition numbers always\n\
  *  lie between zero (very badly conditioned) and one (very well\n\
  *  conditioned). If n = 1, S(lambda) is defined to be 1.\n\
  *\n\
  *  An approximate error bound for a computed eigenvalue W(i) is given by\n\
  *\n\
  *                      EPS * norm(T) / S(i)\n\
  *\n\
  *  where EPS is the machine precision.\n\
  *\n\
  *  The reciprocal of the condition number of the right eigenvector u\n\
  *  corresponding to lambda is defined as follows. Suppose\n\
  *\n\
  *              T = ( lambda  c  )\n\
  *                  (   0    T22 )\n\
  *\n\
  *  Then the reciprocal condition number is\n\
  *\n\
  *          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )\n\
  *\n\
  *  where sigma-min denotes the smallest singular value. We approximate\n\
  *  the smallest singular value by the reciprocal of an estimate of the\n\
  *  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is\n\
  *  defined to be abs(T(1,1)).\n\
  *\n\
  *  An approximate error bound for a computed right eigenvector VR(i)\n\
  *  is given by\n\
  *\n\
  *                      EPS * norm(T) / SEP(i)\n\
  *\n\
  *  =====================================================================\n\
  *\n"