1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
---
:name: cunmtr
:md5sum: 11d3fb40772ec5f0829d5a084bbba746
:category: :subroutine
:arguments:
- side:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: complex
:intent: input
:dims:
- lda
- m
- lda:
:type: integer
:intent: input
- tau:
:type: complex
:intent: input
:dims:
- m-1
- c:
:type: complex
:intent: input/output
:dims:
- ldc
- n
- ldc:
:type: integer
:intent: input
- work:
:type: complex
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: "lsame_(&side,\"L\") ? n : lsame_(&side,\"R\") ? m : 0"
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CUNMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CUNMTR overwrites the general complex M-by-N matrix C with\n\
*\n\
* SIDE = 'L' SIDE = 'R'\n\
* TRANS = 'N': Q * C C * Q\n\
* TRANS = 'C': Q**H * C C * Q**H\n\
*\n\
* where Q is a complex unitary matrix of order nq, with nq = m if\n\
* SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of\n\
* nq-1 elementary reflectors, as returned by CHETRD:\n\
*\n\
* if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);\n\
*\n\
* if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* = 'L': apply Q or Q**H from the Left;\n\
* = 'R': apply Q or Q**H from the Right.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A contains elementary reflectors\n\
* from CHETRD;\n\
* = 'L': Lower triangle of A contains elementary reflectors\n\
* from CHETRD.\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* = 'N': No transpose, apply Q;\n\
* = 'C': Conjugate transpose, apply Q**H.\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix C. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix C. N >= 0.\n\
*\n\
* A (input) COMPLEX array, dimension\n\
* (LDA,M) if SIDE = 'L'\n\
* (LDA,N) if SIDE = 'R'\n\
* The vectors which define the elementary reflectors, as\n\
* returned by CHETRD.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A.\n\
* LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.\n\
*\n\
* TAU (input) COMPLEX array, dimension\n\
* (M-1) if SIDE = 'L'\n\
* (N-1) if SIDE = 'R'\n\
* TAU(i) must contain the scalar factor of the elementary\n\
* reflector H(i), as returned by CHETRD.\n\
*\n\
* C (input/output) COMPLEX array, dimension (LDC,N)\n\
* On entry, the M-by-N matrix C.\n\
* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.\n\
*\n\
* LDC (input) INTEGER\n\
* The leading dimension of the array C. LDC >= max(1,M).\n\
*\n\
* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK.\n\
* If SIDE = 'L', LWORK >= max(1,N);\n\
* if SIDE = 'R', LWORK >= max(1,M).\n\
* For optimum performance LWORK >= N*NB if SIDE = 'L', and\n\
* LWORK >=M*NB if SIDE = 'R', where NB is the optimal\n\
* blocksize.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n LOGICAL LEFT, LQUERY, UPPER\n INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW\n\
* ..\n\
* .. External Functions ..\n LOGICAL LSAME\n INTEGER ILAENV\n EXTERNAL ILAENV, LSAME\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL CUNMQL, CUNMQR, XERBLA\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC MAX\n\
* ..\n"
|