1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
---
:name: dla_rpvgrw
:md5sum: f34d9e53195025ba4075345e34febe49
:category: :function
:type: doublereal
:arguments:
- n:
:type: integer
:intent: input
- ncols:
:type: integer
:intent: input
- a:
:type: doublereal
:intent: input
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- af:
:type: doublereal
:intent: input
:dims:
- ldaf
- n
- ldaf:
:type: integer
:intent: input
:substitutions: {}
:fortran_help: " DOUBLE PRECISION FUNCTION DLA_RPVGRW( N, NCOLS, A, LDA, AF, LDAF )\n\n\
* Purpose\n\
* =======\n\
* \n\
* DLA_RPVGRW computes the reciprocal pivot growth factor\n\
* norm(A)/norm(U). The \"max absolute element\" norm is used. If this is\n\
* much less than 1, the stability of the LU factorization of the\n\
* (equilibrated) matrix A could be poor. This also means that the\n\
* solution X, estimated condition numbers, and error bounds could be\n\
* unreliable.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* The number of linear equations, i.e., the order of the\n\
* matrix A. N >= 0.\n\
*\n\
* NCOLS (input) INTEGER\n\
* The number of columns of the matrix A. NCOLS >= 0.\n\
*\n\
* A (input) DOUBLE PRECISION array, dimension (LDA,N)\n\
* On entry, the N-by-N matrix A.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* AF (input) DOUBLE PRECISION array, dimension (LDAF,N)\n\
* The factors L and U from the factorization\n\
* A = P*L*U as computed by DGETRF.\n\
*\n\
* LDAF (input) INTEGER\n\
* The leading dimension of the array AF. LDAF >= max(1,N).\n\
*\n\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n INTEGER I, J\n DOUBLE PRECISION AMAX, UMAX, RPVGRW\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC ABS, MAX, MIN\n\
* ..\n"
|