1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
---
:name: dlahqr
:md5sum: a93986d5c9d574d1cd8150a2f4428399
:category: :subroutine
:arguments:
- wantt:
:type: logical
:intent: input
- wantz:
:type: logical
:intent: input
- n:
:type: integer
:intent: input
- ilo:
:type: integer
:intent: input
- ihi:
:type: integer
:intent: input
- h:
:type: doublereal
:intent: input/output
:dims:
- ldh
- n
- ldh:
:type: integer
:intent: input
- wr:
:type: doublereal
:intent: output
:dims:
- n
- wi:
:type: doublereal
:intent: output
:dims:
- n
- iloz:
:type: integer
:intent: input
- ihiz:
:type: integer
:intent: input
- z:
:type: doublereal
:intent: input/output
:dims:
- "wantz ? ldz : 0"
- "wantz ? n : 0"
- ldz:
:type: integer
:intent: input
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILOZ, IHIZ, Z, LDZ, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DLAHQR is an auxiliary routine called by DHSEQR to update the\n\
* eigenvalues and Schur decomposition already computed by DHSEQR, by\n\
* dealing with the Hessenberg submatrix in rows and columns ILO to\n\
* IHI.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* WANTT (input) LOGICAL\n\
* = .TRUE. : the full Schur form T is required;\n\
* = .FALSE.: only eigenvalues are required.\n\
*\n\
* WANTZ (input) LOGICAL\n\
* = .TRUE. : the matrix of Schur vectors Z is required;\n\
* = .FALSE.: Schur vectors are not required.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix H. N >= 0.\n\
*\n\
* ILO (input) INTEGER\n\
* IHI (input) INTEGER\n\
* It is assumed that H is already upper quasi-triangular in\n\
* rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless\n\
* ILO = 1). DLAHQR works primarily with the Hessenberg\n\
* submatrix in rows and columns ILO to IHI, but applies\n\
* transformations to all of H if WANTT is .TRUE..\n\
* 1 <= ILO <= max(1,IHI); IHI <= N.\n\
*\n\
* H (input/output) DOUBLE PRECISION array, dimension (LDH,N)\n\
* On entry, the upper Hessenberg matrix H.\n\
* On exit, if INFO is zero and if WANTT is .TRUE., H is upper\n\
* quasi-triangular in rows and columns ILO:IHI, with any\n\
* 2-by-2 diagonal blocks in standard form. If INFO is zero\n\
* and WANTT is .FALSE., the contents of H are unspecified on\n\
* exit. The output state of H if INFO is nonzero is given\n\
* below under the description of INFO.\n\
*\n\
* LDH (input) INTEGER\n\
* The leading dimension of the array H. LDH >= max(1,N).\n\
*\n\
* WR (output) DOUBLE PRECISION array, dimension (N)\n\
* WI (output) DOUBLE PRECISION array, dimension (N)\n\
* The real and imaginary parts, respectively, of the computed\n\
* eigenvalues ILO to IHI are stored in the corresponding\n\
* elements of WR and WI. If two eigenvalues are computed as a\n\
* complex conjugate pair, they are stored in consecutive\n\
* elements of WR and WI, say the i-th and (i+1)th, with\n\
* WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the\n\
* eigenvalues are stored in the same order as on the diagonal\n\
* of the Schur form returned in H, with WR(i) = H(i,i), and, if\n\
* H(i:i+1,i:i+1) is a 2-by-2 diagonal block,\n\
* WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).\n\
*\n\
* ILOZ (input) INTEGER\n\
* IHIZ (input) INTEGER\n\
* Specify the rows of Z to which transformations must be\n\
* applied if WANTZ is .TRUE..\n\
* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.\n\
*\n\
* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)\n\
* If WANTZ is .TRUE., on entry Z must contain the current\n\
* matrix Z of transformations accumulated by DHSEQR, and on\n\
* exit Z has been updated; transformations are applied only to\n\
* the submatrix Z(ILOZ:IHIZ,ILO:IHI).\n\
* If WANTZ is .FALSE., Z is not referenced.\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z. LDZ >= max(1,N).\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* .GT. 0: If INFO = i, DLAHQR failed to compute all the\n\
* eigenvalues ILO to IHI in a total of 30 iterations\n\
* per eigenvalue; elements i+1:ihi of WR and WI\n\
* contain those eigenvalues which have been\n\
* successfully computed.\n\
*\n\
* If INFO .GT. 0 and WANTT is .FALSE., then on exit,\n\
* the remaining unconverged eigenvalues are the\n\
* eigenvalues of the upper Hessenberg matrix rows\n\
* and columns ILO thorugh INFO of the final, output\n\
* value of H.\n\
*\n\
* If INFO .GT. 0 and WANTT is .TRUE., then on exit\n\
* (*) (initial value of H)*U = U*(final value of H)\n\
* where U is an orthognal matrix. The final\n\
* value of H is upper Hessenberg and triangular in\n\
* rows and columns INFO+1 through IHI.\n\
*\n\
* If INFO .GT. 0 and WANTZ is .TRUE., then on exit\n\
* (final value of Z) = (initial value of Z)*U\n\
* where U is the orthogonal matrix in (*)\n\
* (regardless of the value of WANTT.)\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* 02-96 Based on modifications by\n\
* David Day, Sandia National Laboratory, USA\n\
*\n\
* 12-04 Further modifications by\n\
* Ralph Byers, University of Kansas, USA\n\
* This is a modified version of DLAHQR from LAPACK version 3.0.\n\
* It is (1) more robust against overflow and underflow and\n\
* (2) adopts the more conservative Ahues & Tisseur stopping\n\
* criterion (LAWN 122, 1997).\n\
*\n\
* =========================================================\n\
*\n"
|