1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
---
:name: dlatdf
:md5sum: 69cfce3953f1837f451afd56bf000e43
:category: :subroutine
:arguments:
- ijob:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- z:
:type: doublereal
:intent: input
:dims:
- ldz
- n
- ldz:
:type: integer
:intent: input
- rhs:
:type: doublereal
:intent: input/output
:dims:
- n
- rdsum:
:type: doublereal
:intent: input/output
- rdscal:
:type: doublereal
:intent: input/output
- ipiv:
:type: integer
:intent: input
:dims:
- n
- jpiv:
:type: integer
:intent: input
:dims:
- n
:substitutions: {}
:fortran_help: " SUBROUTINE DLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, JPIV )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DLATDF uses the LU factorization of the n-by-n matrix Z computed by\n\
* DGETC2 and computes a contribution to the reciprocal Dif-estimate\n\
* by solving Z * x = b for x, and choosing the r.h.s. b such that\n\
* the norm of x is as large as possible. On entry RHS = b holds the\n\
* contribution from earlier solved sub-systems, and on return RHS = x.\n\
*\n\
* The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q,\n\
* where P and Q are permutation matrices. L is lower triangular with\n\
* unit diagonal elements and U is upper triangular.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* IJOB (input) INTEGER\n\
* IJOB = 2: First compute an approximative null-vector e\n\
* of Z using DGECON, e is normalized and solve for\n\
* Zx = +-e - f with the sign giving the greater value\n\
* of 2-norm(x). About 5 times as expensive as Default.\n\
* IJOB .ne. 2: Local look ahead strategy where all entries of\n\
* the r.h.s. b is chosen as either +1 or -1 (Default).\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix Z.\n\
*\n\
* Z (input) DOUBLE PRECISION array, dimension (LDZ, N)\n\
* On entry, the LU part of the factorization of the n-by-n\n\
* matrix Z computed by DGETC2: Z = P * L * U * Q\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z. LDA >= max(1, N).\n\
*\n\
* RHS (input/output) DOUBLE PRECISION array, dimension (N)\n\
* On entry, RHS contains contributions from other subsystems.\n\
* On exit, RHS contains the solution of the subsystem with\n\
* entries acoording to the value of IJOB (see above).\n\
*\n\
* RDSUM (input/output) DOUBLE PRECISION\n\
* On entry, the sum of squares of computed contributions to\n\
* the Dif-estimate under computation by DTGSYL, where the\n\
* scaling factor RDSCAL (see below) has been factored out.\n\
* On exit, the corresponding sum of squares updated with the\n\
* contributions from the current sub-system.\n\
* If TRANS = 'T' RDSUM is not touched.\n\
* NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL.\n\
*\n\
* RDSCAL (input/output) DOUBLE PRECISION\n\
* On entry, scaling factor used to prevent overflow in RDSUM.\n\
* On exit, RDSCAL is updated w.r.t. the current contributions\n\
* in RDSUM.\n\
* If TRANS = 'T', RDSCAL is not touched.\n\
* NOTE: RDSCAL only makes sense when DTGSY2 is called by\n\
* DTGSYL.\n\
*\n\
* IPIV (input) INTEGER array, dimension (N).\n\
* The pivot indices; for 1 <= i <= N, row i of the\n\
* matrix has been interchanged with row IPIV(i).\n\
*\n\
* JPIV (input) INTEGER array, dimension (N).\n\
* The pivot indices; for 1 <= j <= N, column j of the\n\
* matrix has been interchanged with column JPIV(j).\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n\
* Umea University, S-901 87 Umea, Sweden.\n\
*\n\
* This routine is a further developed implementation of algorithm\n\
* BSOLVE in [1] using complete pivoting in the LU factorization.\n\
*\n\
* [1] Bo Kagstrom and Lars Westin,\n\
* Generalized Schur Methods with Condition Estimators for\n\
* Solving the Generalized Sylvester Equation, IEEE Transactions\n\
* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.\n\
*\n\
* [2] Peter Poromaa,\n\
* On Efficient and Robust Estimators for the Separation\n\
* between two Regular Matrix Pairs with Applications in\n\
* Condition Estimation. Report IMINF-95.05, Departement of\n\
* Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.\n\
*\n\
* =====================================================================\n\
*\n"
|