File: dpbcon

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (98 lines) | stat: -rw-r--r-- 3,109 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
--- 
:name: dpbcon
:md5sum: 20d0a20dbd1b200d211eeeb871142b23
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- kd: 
    :type: integer
    :intent: input
- ab: 
    :type: doublereal
    :intent: input
    :dims: 
    - ldab
    - n
- ldab: 
    :type: integer
    :intent: input
- anorm: 
    :type: doublereal
    :intent: input
- rcond: 
    :type: doublereal
    :intent: output
- work: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - 3*n
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DPBCON( UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK, IWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DPBCON estimates the reciprocal of the condition number (in the\n\
  *  1-norm) of a real symmetric positive definite band matrix using the\n\
  *  Cholesky factorization A = U**T*U or A = L*L**T computed by DPBTRF.\n\
  *\n\
  *  An estimate is obtained for norm(inv(A)), and the reciprocal of the\n\
  *  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangular factor stored in AB;\n\
  *          = 'L':  Lower triangular factor stored in AB.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  KD      (input) INTEGER\n\
  *          The number of superdiagonals of the matrix A if UPLO = 'U',\n\
  *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.\n\
  *\n\
  *  AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)\n\
  *          The triangular factor U or L from the Cholesky factorization\n\
  *          A = U**T*U or A = L*L**T of the band matrix A, stored in the\n\
  *          first KD+1 rows of the array.  The j-th column of U or L is\n\
  *          stored in the j-th column of the array AB as follows:\n\
  *          if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;\n\
  *          if UPLO ='L', AB(1+i-j,j)    = L(i,j) for j<=i<=min(n,j+kd).\n\
  *\n\
  *  LDAB    (input) INTEGER\n\
  *          The leading dimension of the array AB.  LDAB >= KD+1.\n\
  *\n\
  *  ANORM   (input) DOUBLE PRECISION\n\
  *          The 1-norm (or infinity-norm) of the symmetric band matrix A.\n\
  *\n\
  *  RCOND   (output) DOUBLE PRECISION\n\
  *          The reciprocal of the condition number of the matrix A,\n\
  *          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an\n\
  *          estimate of the 1-norm of inv(A) computed in this routine.\n\
  *\n\
  *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)\n\
  *\n\
  *  IWORK   (workspace) INTEGER array, dimension (N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"