File: dpttrs

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (88 lines) | stat: -rw-r--r-- 2,782 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
--- 
:name: dpttrs
:md5sum: 4df62154d25e780b1accac29911e5aef
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- d: 
    :type: doublereal
    :intent: input
    :dims: 
    - n
- e: 
    :type: doublereal
    :intent: input
    :dims: 
    - n-1
- b: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldb
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DPTTRS( N, NRHS, D, E, B, LDB, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DPTTRS solves a tridiagonal system of the form\n\
  *     A * X = B\n\
  *  using the L*D*L' factorization of A computed by DPTTRF.  D is a\n\
  *  diagonal matrix specified in the vector D, L is a unit bidiagonal\n\
  *  matrix whose subdiagonal is specified in the vector E, and X and B\n\
  *  are N by NRHS matrices.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the tridiagonal matrix A.  N >= 0.\n\
  *\n\
  *  NRHS    (input) INTEGER\n\
  *          The number of right hand sides, i.e., the number of columns\n\
  *          of the matrix B.  NRHS >= 0.\n\
  *\n\
  *  D       (input) DOUBLE PRECISION array, dimension (N)\n\
  *          The n diagonal elements of the diagonal matrix D from the\n\
  *          L*D*L' factorization of A.\n\
  *\n\
  *  E       (input) DOUBLE PRECISION array, dimension (N-1)\n\
  *          The (n-1) subdiagonal elements of the unit bidiagonal factor\n\
  *          L from the L*D*L' factorization of A.  E can also be regarded\n\
  *          as the superdiagonal of the unit bidiagonal factor U from the\n\
  *          factorization A = U'*D*U.\n\
  *\n\
  *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)\n\
  *          On entry, the right hand side vectors B for the system of\n\
  *          linear equations.\n\
  *          On exit, the solution vectors, X.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B.  LDB >= max(1,N).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -k, the k-th argument had an illegal value\n\
  *\n\n\
  *  =====================================================================\n\
  *\n\
  *     .. Local Scalars ..\n      INTEGER            J, JB, NB\n\
  *     ..\n\
  *     .. External Functions ..\n      INTEGER            ILAENV\n      EXTERNAL           ILAENV\n\
  *     ..\n\
  *     .. External Subroutines ..\n      EXTERNAL           DPTTS2, XERBLA\n\
  *     ..\n\
  *     .. Intrinsic Functions ..\n      INTRINSIC          MAX, MIN\n\
  *     ..\n"