1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
---
:name: dsygv
:md5sum: 1004f5151de1d6f47d819bbd8507eeaa
:category: :subroutine
:arguments:
- itype:
:type: integer
:intent: input
- jobz:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublereal
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- b:
:type: doublereal
:intent: input/output
:dims:
- ldb
- n
- ldb:
:type: integer
:intent: input
- w:
:type: doublereal
:intent: output
:dims:
- n
- work:
:type: doublereal
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: 3*n-1
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DSYGV computes all the eigenvalues, and optionally, the eigenvectors\n\
* of a real generalized symmetric-definite eigenproblem, of the form\n\
* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.\n\
* Here A and B are assumed to be symmetric and B is also\n\
* positive definite.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* ITYPE (input) INTEGER\n\
* Specifies the problem type to be solved:\n\
* = 1: A*x = (lambda)*B*x\n\
* = 2: A*B*x = (lambda)*x\n\
* = 3: B*A*x = (lambda)*x\n\
*\n\
* JOBZ (input) CHARACTER*1\n\
* = 'N': Compute eigenvalues only;\n\
* = 'V': Compute eigenvalues and eigenvectors.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangles of A and B are stored;\n\
* = 'L': Lower triangles of A and B are stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices A and B. N >= 0.\n\
*\n\
* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)\n\
* On entry, the symmetric matrix A. If UPLO = 'U', the\n\
* leading N-by-N upper triangular part of A contains the\n\
* upper triangular part of the matrix A. If UPLO = 'L',\n\
* the leading N-by-N lower triangular part of A contains\n\
* the lower triangular part of the matrix A.\n\
*\n\
* On exit, if JOBZ = 'V', then if INFO = 0, A contains the\n\
* matrix Z of eigenvectors. The eigenvectors are normalized\n\
* as follows:\n\
* if ITYPE = 1 or 2, Z**T*B*Z = I;\n\
* if ITYPE = 3, Z**T*inv(B)*Z = I.\n\
* If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')\n\
* or the lower triangle (if UPLO='L') of A, including the\n\
* diagonal, is destroyed.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* B (input/output) DOUBLE PRECISION array, dimension (LDB, N)\n\
* On entry, the symmetric positive definite matrix B.\n\
* If UPLO = 'U', the leading N-by-N upper triangular part of B\n\
* contains the upper triangular part of the matrix B.\n\
* If UPLO = 'L', the leading N-by-N lower triangular part of B\n\
* contains the lower triangular part of the matrix B.\n\
*\n\
* On exit, if INFO <= N, the part of B containing the matrix is\n\
* overwritten by the triangular factor U or L from the Cholesky\n\
* factorization B = U**T*U or B = L*L**T.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* W (output) DOUBLE PRECISION array, dimension (N)\n\
* If INFO = 0, the eigenvalues in ascending order.\n\
*\n\
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The length of the array WORK. LWORK >= max(1,3*N-1).\n\
* For optimal efficiency, LWORK >= (NB+2)*N,\n\
* where NB is the blocksize for DSYTRD returned by ILAENV.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: DPOTRF or DSYEV returned an error code:\n\
* <= N: if INFO = i, DSYEV failed to converge;\n\
* i off-diagonal elements of an intermediate\n\
* tridiagonal form did not converge to zero;\n\
* > N: if INFO = N + i, for 1 <= i <= N, then the leading\n\
* minor of order i of B is not positive definite.\n\
* The factorization of B could not be completed and\n\
* no eigenvalues or eigenvectors were computed.\n\
*\n\n\
* =====================================================================\n\
*\n"
|