File: slaed5

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (78 lines) | stat: -rw-r--r-- 2,026 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
--- 
:name: slaed5
:md5sum: 1e0d84a3982b12261a34f11249234b49
:category: :subroutine
:arguments: 
- i: 
    :type: integer
    :intent: input
- d: 
    :type: real
    :intent: input
    :dims: 
    - "2"
- z: 
    :type: real
    :intent: input
    :dims: 
    - "2"
- delta: 
    :type: real
    :intent: output
    :dims: 
    - "2"
- rho: 
    :type: real
    :intent: input
- dlam: 
    :type: real
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE SLAED5( I, D, Z, DELTA, RHO, DLAM )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  This subroutine computes the I-th eigenvalue of a symmetric rank-one\n\
  *  modification of a 2-by-2 diagonal matrix\n\
  *\n\
  *             diag( D )  +  RHO *  Z * transpose(Z) .\n\
  *\n\
  *  The diagonal elements in the array D are assumed to satisfy\n\
  *\n\
  *             D(i) < D(j)  for  i < j .\n\
  *\n\
  *  We also assume RHO > 0 and that the Euclidean norm of the vector\n\
  *  Z is one.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  I      (input) INTEGER\n\
  *         The index of the eigenvalue to be computed.  I = 1 or I = 2.\n\
  *\n\
  *  D      (input) REAL array, dimension (2)\n\
  *         The original eigenvalues.  We assume D(1) < D(2).\n\
  *\n\
  *  Z      (input) REAL array, dimension (2)\n\
  *         The components of the updating vector.\n\
  *\n\
  *  DELTA  (output) REAL array, dimension (2)\n\
  *         The vector DELTA contains the information necessary\n\
  *         to construct the eigenvectors.\n\
  *\n\
  *  RHO    (input) REAL\n\
  *         The scalar in the symmetric updating formula.\n\
  *\n\
  *  DLAM   (output) REAL\n\
  *         The computed lambda_I, the I-th updated eigenvalue.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Ren-Cang Li, Computer Science Division, University of California\n\
  *     at Berkeley, USA\n\
  *\n\
  *  =====================================================================\n\
  *\n"