File: slaed9

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (137 lines) | stat: -rw-r--r-- 4,145 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
--- 
:name: slaed9
:md5sum: 19d8d043e908de337edab6e6515b3c83
:category: :subroutine
:arguments: 
- k: 
    :type: integer
    :intent: input
- kstart: 
    :type: integer
    :intent: input
- kstop: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- d: 
    :type: real
    :intent: output
    :dims: 
    - MAX(1,n)
- q: 
    :type: real
    :intent: workspace
    :dims: 
    - ldq
    - MAX(1,n)
- ldq: 
    :type: integer
    :intent: input
- rho: 
    :type: real
    :intent: input
- dlamda: 
    :type: real
    :intent: input
    :dims: 
    - k
- w: 
    :type: real
    :intent: input
    :dims: 
    - k
- s: 
    :type: real
    :intent: output
    :dims: 
    - lds
    - k
- lds: 
    :type: integer
    :intent: input
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldq: MAX( 1, n )
  lds: MAX( 1, k )
:fortran_help: "      SUBROUTINE SLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W, S, LDS, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SLAED9 finds the roots of the secular equation, as defined by the\n\
  *  values in D, Z, and RHO, between KSTART and KSTOP.  It makes the\n\
  *  appropriate calls to SLAED4 and then stores the new matrix of\n\
  *  eigenvectors for use in calculating the next level of Z vectors.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  K       (input) INTEGER\n\
  *          The number of terms in the rational function to be solved by\n\
  *          SLAED4.  K >= 0.\n\
  *\n\
  *  KSTART  (input) INTEGER\n\
  *  KSTOP   (input) INTEGER\n\
  *          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP\n\
  *          are to be computed.  1 <= KSTART <= KSTOP <= K.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of rows and columns in the Q matrix.\n\
  *          N >= K (delation may result in N > K).\n\
  *\n\
  *  D       (output) REAL array, dimension (N)\n\
  *          D(I) contains the updated eigenvalues\n\
  *          for KSTART <= I <= KSTOP.\n\
  *\n\
  *  Q       (workspace) REAL array, dimension (LDQ,N)\n\
  *\n\
  *  LDQ     (input) INTEGER\n\
  *          The leading dimension of the array Q.  LDQ >= max( 1, N ).\n\
  *\n\
  *  RHO     (input) REAL\n\
  *          The value of the parameter in the rank one update equation.\n\
  *          RHO >= 0 required.\n\
  *\n\
  *  DLAMDA  (input) REAL array, dimension (K)\n\
  *          The first K elements of this array contain the old roots\n\
  *          of the deflated updating problem.  These are the poles\n\
  *          of the secular equation.\n\
  *\n\
  *  W       (input) REAL array, dimension (K)\n\
  *          The first K elements of this array contain the components\n\
  *          of the deflation-adjusted updating vector.\n\
  *\n\
  *  S       (output) REAL array, dimension (LDS, K)\n\
  *          Will contain the eigenvectors of the repaired matrix which\n\
  *          will be stored for subsequent Z vector calculation and\n\
  *          multiplied by the previously accumulated eigenvectors\n\
  *          to update the system.\n\
  *\n\
  *  LDS     (input) INTEGER\n\
  *          The leading dimension of S.  LDS >= max( 1, K ).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit.\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *          > 0:  if INFO = 1, an eigenvalue did not converge\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Jeff Rutter, Computer Science Division, University of California\n\
  *     at Berkeley, USA\n\
  *\n\
  *  =====================================================================\n\
  *\n\
  *     .. Local Scalars ..\n      INTEGER            I, J\n      REAL               TEMP\n\
  *     ..\n\
  *     .. External Functions ..\n      REAL               SLAMC3, SNRM2\n      EXTERNAL           SLAMC3, SNRM2\n\
  *     ..\n\
  *     .. External Subroutines ..\n      EXTERNAL           SCOPY, SLAED4, XERBLA\n\
  *     ..\n\
  *     .. Intrinsic Functions ..\n      INTRINSIC          MAX, SIGN, SQRT\n\
  *     ..\n"