1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
|
---
:name: slarrr
:md5sum: 2978dd436dee35812a8a2070f682419c
:category: :subroutine
:arguments:
- n:
:type: integer
:intent: input
- d:
:type: real
:intent: input
:dims:
- n
- e:
:type: real
:intent: input/output
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE SLARRR( N, D, E, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* Perform tests to decide whether the symmetric tridiagonal matrix T\n\
* warrants expensive computations which guarantee high relative accuracy\n\
* in the eigenvalues.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix. N > 0.\n\
*\n\
* D (input) REAL array, dimension (N)\n\
* The N diagonal elements of the tridiagonal matrix T.\n\
*\n\
* E (input/output) REAL array, dimension (N)\n\
* On entry, the first (N-1) entries contain the subdiagonal\n\
* elements of the tridiagonal matrix T; E(N) is set to ZERO.\n\
*\n\
* INFO (output) INTEGER\n\
* INFO = 0(default) : the matrix warrants computations preserving\n\
* relative accuracy.\n\
* INFO = 1 : the matrix warrants computations guaranteeing\n\
* only absolute accuracy.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Beresford Parlett, University of California, Berkeley, USA\n\
* Jim Demmel, University of California, Berkeley, USA\n\
* Inderjit Dhillon, University of Texas, Austin, USA\n\
* Osni Marques, LBNL/NERSC, USA\n\
* Christof Voemel, University of California, Berkeley, USA\n\
*\n\
* =====================================================================\n\
*\n"
|