File: ssygv

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (148 lines) | stat: -rw-r--r-- 5,333 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
--- 
:name: ssygv
:md5sum: 1003382acfdb1e9d9c4540ae84151723
:category: :subroutine
:arguments: 
- itype: 
    :type: integer
    :intent: input
- jobz: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: real
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: real
    :intent: input/output
    :dims: 
    - ldb
    - n
- ldb: 
    :type: integer
    :intent: input
- w: 
    :type: real
    :intent: output
    :dims: 
    - n
- work: 
    :type: real
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: 3*n-1
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE SSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  SSYGV computes all the eigenvalues, and optionally, the eigenvectors\n\
  *  of a real generalized symmetric-definite eigenproblem, of the form\n\
  *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.\n\
  *  Here A and B are assumed to be symmetric and B is also\n\
  *  positive definite.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  ITYPE   (input) INTEGER\n\
  *          Specifies the problem type to be solved:\n\
  *          = 1:  A*x = (lambda)*B*x\n\
  *          = 2:  A*B*x = (lambda)*x\n\
  *          = 3:  B*A*x = (lambda)*x\n\
  *\n\
  *  JOBZ    (input) CHARACTER*1\n\
  *          = 'N':  Compute eigenvalues only;\n\
  *          = 'V':  Compute eigenvalues and eigenvectors.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          = 'U':  Upper triangles of A and B are stored;\n\
  *          = 'L':  Lower triangles of A and B are stored.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrices A and B.  N >= 0.\n\
  *\n\
  *  A       (input/output) REAL array, dimension (LDA, N)\n\
  *          On entry, the symmetric matrix A.  If UPLO = 'U', the\n\
  *          leading N-by-N upper triangular part of A contains the\n\
  *          upper triangular part of the matrix A.  If UPLO = 'L',\n\
  *          the leading N-by-N lower triangular part of A contains\n\
  *          the lower triangular part of the matrix A.\n\
  *\n\
  *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the\n\
  *          matrix Z of eigenvectors.  The eigenvectors are normalized\n\
  *          as follows:\n\
  *          if ITYPE = 1 or 2, Z**T*B*Z = I;\n\
  *          if ITYPE = 3, Z**T*inv(B)*Z = I.\n\
  *          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')\n\
  *          or the lower triangle (if UPLO='L') of A, including the\n\
  *          diagonal, is destroyed.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  B       (input/output) REAL array, dimension (LDB, N)\n\
  *          On entry, the symmetric positive definite matrix B.\n\
  *          If UPLO = 'U', the leading N-by-N upper triangular part of B\n\
  *          contains the upper triangular part of the matrix B.\n\
  *          If UPLO = 'L', the leading N-by-N lower triangular part of B\n\
  *          contains the lower triangular part of the matrix B.\n\
  *\n\
  *          On exit, if INFO <= N, the part of B containing the matrix is\n\
  *          overwritten by the triangular factor U or L from the Cholesky\n\
  *          factorization B = U**T*U or B = L*L**T.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B.  LDB >= max(1,N).\n\
  *\n\
  *  W       (output) REAL array, dimension (N)\n\
  *          If INFO = 0, the eigenvalues in ascending order.\n\
  *\n\
  *  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The length of the array WORK.  LWORK >= max(1,3*N-1).\n\
  *          For optimal efficiency, LWORK >= (NB+2)*N,\n\
  *          where NB is the blocksize for SSYTRD returned by ILAENV.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  SPOTRF or SSYEV returned an error code:\n\
  *             <= N:  if INFO = i, SSYEV failed to converge;\n\
  *                    i off-diagonal elements of an intermediate\n\
  *                    tridiagonal form did not converge to zero;\n\
  *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading\n\
  *                    minor of order i of B is not positive definite.\n\
  *                    The factorization of B could not be completed and\n\
  *                    no eigenvalues or eigenvectors were computed.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"