File: stgsna

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (354 lines) | stat: -rw-r--r-- 13,713 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
--- 
:name: stgsna
:md5sum: df29cdbd8fb6f9df1af4856bd8b8b717
:category: :subroutine
:arguments: 
- job: 
    :type: char
    :intent: input
- howmny: 
    :type: char
    :intent: input
- select: 
    :type: logical
    :intent: input
    :dims: 
    - n
- n: 
    :type: integer
    :intent: input
- a: 
    :type: real
    :intent: input
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: real
    :intent: input
    :dims: 
    - ldb
    - n
- ldb: 
    :type: integer
    :intent: input
- vl: 
    :type: real
    :intent: input
    :dims: 
    - ldvl
    - m
- ldvl: 
    :type: integer
    :intent: input
- vr: 
    :type: real
    :intent: input
    :dims: 
    - ldvr
    - m
- ldvr: 
    :type: integer
    :intent: input
- s: 
    :type: real
    :intent: output
    :dims: 
    - mm
- dif: 
    :type: real
    :intent: output
    :dims: 
    - mm
- mm: 
    :type: integer
    :intent: input
- m: 
    :type: integer
    :intent: output
- work: 
    :type: real
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: "(lsame_(&job,\"V\")||lsame_(&job,\"B\")) ? 2*n*n : n"
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - "lsame_(&job,\"E\") ? 0 : n + 6"
- info: 
    :type: integer
    :intent: output
:substitutions: 
  mm: m
:fortran_help: "      SUBROUTINE STGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  STGSNA estimates reciprocal condition numbers for specified\n\
  *  eigenvalues and/or eigenvectors of a matrix pair (A, B) in\n\
  *  generalized real Schur canonical form (or of any matrix pair\n\
  *  (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where\n\
  *  Z' denotes the transpose of Z.\n\
  *\n\
  *  (A, B) must be in generalized real Schur form (as returned by SGGES),\n\
  *  i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal\n\
  *  blocks. B is upper triangular.\n\
  *\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOB     (input) CHARACTER*1\n\
  *          Specifies whether condition numbers are required for\n\
  *          eigenvalues (S) or eigenvectors (DIF):\n\
  *          = 'E': for eigenvalues only (S);\n\
  *          = 'V': for eigenvectors only (DIF);\n\
  *          = 'B': for both eigenvalues and eigenvectors (S and DIF).\n\
  *\n\
  *  HOWMNY  (input) CHARACTER*1\n\
  *          = 'A': compute condition numbers for all eigenpairs;\n\
  *          = 'S': compute condition numbers for selected eigenpairs\n\
  *                 specified by the array SELECT.\n\
  *\n\
  *  SELECT  (input) LOGICAL array, dimension (N)\n\
  *          If HOWMNY = 'S', SELECT specifies the eigenpairs for which\n\
  *          condition numbers are required. To select condition numbers\n\
  *          for the eigenpair corresponding to a real eigenvalue w(j),\n\
  *          SELECT(j) must be set to .TRUE.. To select condition numbers\n\
  *          corresponding to a complex conjugate pair of eigenvalues w(j)\n\
  *          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be\n\
  *          set to .TRUE..\n\
  *          If HOWMNY = 'A', SELECT is not referenced.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the square matrix pair (A, B). N >= 0.\n\
  *\n\
  *  A       (input) REAL array, dimension (LDA,N)\n\
  *          The upper quasi-triangular matrix A in the pair (A,B).\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A. LDA >= max(1,N).\n\
  *\n\
  *  B       (input) REAL array, dimension (LDB,N)\n\
  *          The upper triangular matrix B in the pair (A,B).\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B. LDB >= max(1,N).\n\
  *\n\
  *  VL      (input) REAL array, dimension (LDVL,M)\n\
  *          If JOB = 'E' or 'B', VL must contain left eigenvectors of\n\
  *          (A, B), corresponding to the eigenpairs specified by HOWMNY\n\
  *          and SELECT. The eigenvectors must be stored in consecutive\n\
  *          columns of VL, as returned by STGEVC.\n\
  *          If JOB = 'V', VL is not referenced.\n\
  *\n\
  *  LDVL    (input) INTEGER\n\
  *          The leading dimension of the array VL. LDVL >= 1.\n\
  *          If JOB = 'E' or 'B', LDVL >= N.\n\
  *\n\
  *  VR      (input) REAL array, dimension (LDVR,M)\n\
  *          If JOB = 'E' or 'B', VR must contain right eigenvectors of\n\
  *          (A, B), corresponding to the eigenpairs specified by HOWMNY\n\
  *          and SELECT. The eigenvectors must be stored in consecutive\n\
  *          columns ov VR, as returned by STGEVC.\n\
  *          If JOB = 'V', VR is not referenced.\n\
  *\n\
  *  LDVR    (input) INTEGER\n\
  *          The leading dimension of the array VR. LDVR >= 1.\n\
  *          If JOB = 'E' or 'B', LDVR >= N.\n\
  *\n\
  *  S       (output) REAL array, dimension (MM)\n\
  *          If JOB = 'E' or 'B', the reciprocal condition numbers of the\n\
  *          selected eigenvalues, stored in consecutive elements of the\n\
  *          array. For a complex conjugate pair of eigenvalues two\n\
  *          consecutive elements of S are set to the same value. Thus\n\
  *          S(j), DIF(j), and the j-th columns of VL and VR all\n\
  *          correspond to the same eigenpair (but not in general the\n\
  *          j-th eigenpair, unless all eigenpairs are selected).\n\
  *          If JOB = 'V', S is not referenced.\n\
  *\n\
  *  DIF     (output) REAL array, dimension (MM)\n\
  *          If JOB = 'V' or 'B', the estimated reciprocal condition\n\
  *          numbers of the selected eigenvectors, stored in consecutive\n\
  *          elements of the array. For a complex eigenvector two\n\
  *          consecutive elements of DIF are set to the same value. If\n\
  *          the eigenvalues cannot be reordered to compute DIF(j), DIF(j)\n\
  *          is set to 0; this can only occur when the true value would be\n\
  *          very small anyway.\n\
  *          If JOB = 'E', DIF is not referenced.\n\
  *\n\
  *  MM      (input) INTEGER\n\
  *          The number of elements in the arrays S and DIF. MM >= M.\n\
  *\n\
  *  M       (output) INTEGER\n\
  *          The number of elements of the arrays S and DIF used to store\n\
  *          the specified condition numbers; for each selected real\n\
  *          eigenvalue one element is used, and for each selected complex\n\
  *          conjugate pair of eigenvalues, two elements are used.\n\
  *          If HOWMNY = 'A', M is set to N.\n\
  *\n\
  *  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The dimension of the array WORK. LWORK >= max(1,N).\n\
  *          If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  IWORK   (workspace) INTEGER array, dimension (N + 6)\n\
  *          If JOB = 'E', IWORK is not referenced.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          =0: Successful exit\n\
  *          <0: If INFO = -i, the i-th argument had an illegal value\n\
  *\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The reciprocal of the condition number of a generalized eigenvalue\n\
  *  w = (a, b) is defined as\n\
  *\n\
  *       S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v))\n\
  *\n\
  *  where u and v are the left and right eigenvectors of (A, B)\n\
  *  corresponding to w; |z| denotes the absolute value of the complex\n\
  *  number, and norm(u) denotes the 2-norm of the vector u.\n\
  *  The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv)\n\
  *  of the matrix pair (A, B). If both a and b equal zero, then (A B) is\n\
  *  singular and S(I) = -1 is returned.\n\
  *\n\
  *  An approximate error bound on the chordal distance between the i-th\n\
  *  computed generalized eigenvalue w and the corresponding exact\n\
  *  eigenvalue lambda is\n\
  *\n\
  *       chord(w, lambda) <= EPS * norm(A, B) / S(I)\n\
  *\n\
  *  where EPS is the machine precision.\n\
  *\n\
  *  The reciprocal of the condition number DIF(i) of right eigenvector u\n\
  *  and left eigenvector v corresponding to the generalized eigenvalue w\n\
  *  is defined as follows:\n\
  *\n\
  *  a) If the i-th eigenvalue w = (a,b) is real\n\
  *\n\
  *     Suppose U and V are orthogonal transformations such that\n\
  *\n\
  *                U'*(A, B)*V  = (S, T) = ( a   *  ) ( b  *  )  1\n\
  *                                        ( 0  S22 ),( 0 T22 )  n-1\n\
  *                                          1  n-1     1 n-1\n\
  *\n\
  *     Then the reciprocal condition number DIF(i) is\n\
  *\n\
  *                Difl((a, b), (S22, T22)) = sigma-min( Zl ),\n\
  *\n\
  *     where sigma-min(Zl) denotes the smallest singular value of the\n\
  *     2(n-1)-by-2(n-1) matrix\n\
  *\n\
  *         Zl = [ kron(a, In-1)  -kron(1, S22) ]\n\
  *              [ kron(b, In-1)  -kron(1, T22) ] .\n\
  *\n\
  *     Here In-1 is the identity matrix of size n-1. kron(X, Y) is the\n\
  *     Kronecker product between the matrices X and Y.\n\
  *\n\
  *     Note that if the default method for computing DIF(i) is wanted\n\
  *     (see SLATDF), then the parameter DIFDRI (see below) should be\n\
  *     changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)).\n\
  *     See STGSYL for more details.\n\
  *\n\
  *  b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,\n\
  *\n\
  *     Suppose U and V are orthogonal transformations such that\n\
  *\n\
  *                U'*(A, B)*V = (S, T) = ( S11  *   ) ( T11  *  )  2\n\
  *                                       ( 0    S22 ),( 0    T22) n-2\n\
  *                                         2    n-2     2    n-2\n\
  *\n\
  *     and (S11, T11) corresponds to the complex conjugate eigenvalue\n\
  *     pair (w, conjg(w)). There exist unitary matrices U1 and V1 such\n\
  *     that\n\
  *\n\
  *         U1'*S11*V1 = ( s11 s12 )   and U1'*T11*V1 = ( t11 t12 )\n\
  *                      (  0  s22 )                    (  0  t22 )\n\
  *\n\
  *     where the generalized eigenvalues w = s11/t11 and\n\
  *     conjg(w) = s22/t22.\n\
  *\n\
  *     Then the reciprocal condition number DIF(i) is bounded by\n\
  *\n\
  *         min( d1, max( 1, |real(s11)/real(s22)| )*d2 )\n\
  *\n\
  *     where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where\n\
  *     Z1 is the complex 2-by-2 matrix\n\
  *\n\
  *              Z1 =  [ s11  -s22 ]\n\
  *                    [ t11  -t22 ],\n\
  *\n\
  *     This is done by computing (using real arithmetic) the\n\
  *     roots of the characteristical polynomial det(Z1' * Z1 - lambda I),\n\
  *     where Z1' denotes the conjugate transpose of Z1 and det(X) denotes\n\
  *     the determinant of X.\n\
  *\n\
  *     and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an\n\
  *     upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)\n\
  *\n\
  *              Z2 = [ kron(S11', In-2)  -kron(I2, S22) ]\n\
  *                   [ kron(T11', In-2)  -kron(I2, T22) ]\n\
  *\n\
  *     Note that if the default method for computing DIF is wanted (see\n\
  *     SLATDF), then the parameter DIFDRI (see below) should be changed\n\
  *     from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL\n\
  *     for more details.\n\
  *\n\
  *  For each eigenvalue/vector specified by SELECT, DIF stores a\n\
  *  Frobenius norm-based estimate of Difl.\n\
  *\n\
  *  An approximate error bound for the i-th computed eigenvector VL(i) or\n\
  *  VR(i) is given by\n\
  *\n\
  *             EPS * norm(A, B) / DIF(i).\n\
  *\n\
  *  See ref. [2-3] for more details and further references.\n\
  *\n\
  *  Based on contributions by\n\
  *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n\
  *     Umea University, S-901 87 Umea, Sweden.\n\
  *\n\
  *  References\n\
  *  ==========\n\
  *\n\
  *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the\n\
  *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in\n\
  *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and\n\
  *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.\n\
  *\n\
  *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified\n\
  *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition\n\
  *      Estimation: Theory, Algorithms and Software,\n\
  *      Report UMINF - 94.04, Department of Computing Science, Umea\n\
  *      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working\n\
  *      Note 87. To appear in Numerical Algorithms, 1996.\n\
  *\n\
  *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software\n\
  *      for Solving the Generalized Sylvester Equation and Estimating the\n\
  *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,\n\
  *      Department of Computing Science, Umea University, S-901 87 Umea,\n\
  *      Sweden, December 1993, Revised April 1994, Also as LAPACK Working\n\
  *      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,\n\
  *      No 1, 1996.\n\
  *\n\
  *  =====================================================================\n\
  *\n"