1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
---
:name: zgees
:md5sum: 9de99276d77e47de1eb795c27dafa7c3
:category: :subroutine
:arguments:
- jobvs:
:type: char
:intent: input
- sort:
:type: char
:intent: input
- select:
:intent: external procedure
:block_type: logical
:block_arg_num: 1
:block_arg_type: doublecomplex
- n:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- sdim:
:type: integer
:intent: output
- w:
:type: doublecomplex
:intent: output
:dims:
- n
- vs:
:type: doublecomplex
:intent: output
:dims:
- ldvs
- n
- ldvs:
:type: integer
:intent: input
- work:
:type: doublecomplex
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: 2*n
- rwork:
:type: doublereal
:intent: workspace
:dims:
- n
- bwork:
:type: logical
:intent: workspace
:dims:
- "lsame_(&sort,\"N\") ? 0 : n"
- info:
:type: integer
:intent: output
:substitutions:
ldvs: "lsame_(&jobvs,\"V\") ? n : 1"
:fortran_help: " SUBROUTINE ZGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS, LDVS, WORK, LWORK, RWORK, BWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZGEES computes for an N-by-N complex nonsymmetric matrix A, the\n\
* eigenvalues, the Schur form T, and, optionally, the matrix of Schur\n\
* vectors Z. This gives the Schur factorization A = Z*T*(Z**H).\n\
*\n\
* Optionally, it also orders the eigenvalues on the diagonal of the\n\
* Schur form so that selected eigenvalues are at the top left.\n\
* The leading columns of Z then form an orthonormal basis for the\n\
* invariant subspace corresponding to the selected eigenvalues.\n\
*\n\
* A complex matrix is in Schur form if it is upper triangular.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBVS (input) CHARACTER*1\n\
* = 'N': Schur vectors are not computed;\n\
* = 'V': Schur vectors are computed.\n\
*\n\
* SORT (input) CHARACTER*1\n\
* Specifies whether or not to order the eigenvalues on the\n\
* diagonal of the Schur form.\n\
* = 'N': Eigenvalues are not ordered:\n\
* = 'S': Eigenvalues are ordered (see SELECT).\n\
*\n\
* SELECT (external procedure) LOGICAL FUNCTION of one COMPLEX*16 argument\n\
* SELECT must be declared EXTERNAL in the calling subroutine.\n\
* If SORT = 'S', SELECT is used to select eigenvalues to order\n\
* to the top left of the Schur form.\n\
* IF SORT = 'N', SELECT is not referenced.\n\
* The eigenvalue W(j) is selected if SELECT(W(j)) is true.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* A (input/output) COMPLEX*16 array, dimension (LDA,N)\n\
* On entry, the N-by-N matrix A.\n\
* On exit, A has been overwritten by its Schur form T.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* SDIM (output) INTEGER\n\
* If SORT = 'N', SDIM = 0.\n\
* If SORT = 'S', SDIM = number of eigenvalues for which\n\
* SELECT is true.\n\
*\n\
* W (output) COMPLEX*16 array, dimension (N)\n\
* W contains the computed eigenvalues, in the same order that\n\
* they appear on the diagonal of the output Schur form T.\n\
*\n\
* VS (output) COMPLEX*16 array, dimension (LDVS,N)\n\
* If JOBVS = 'V', VS contains the unitary matrix Z of Schur\n\
* vectors.\n\
* If JOBVS = 'N', VS is not referenced.\n\
*\n\
* LDVS (input) INTEGER\n\
* The leading dimension of the array VS. LDVS >= 1; if\n\
* JOBVS = 'V', LDVS >= N.\n\
*\n\
* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK. LWORK >= max(1,2*N).\n\
* For good performance, LWORK must generally be larger.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* RWORK (workspace) DOUBLE PRECISION array, dimension (N)\n\
*\n\
* BWORK (workspace) LOGICAL array, dimension (N)\n\
* Not referenced if SORT = 'N'.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: if INFO = i, and i is\n\
* <= N: the QR algorithm failed to compute all the\n\
* eigenvalues; elements 1:ILO-1 and i+1:N of W\n\
* contain those eigenvalues which have converged;\n\
* if JOBVS = 'V', VS contains the matrix which\n\
* reduces A to its partially converged Schur form.\n\
* = N+1: the eigenvalues could not be reordered because\n\
* some eigenvalues were too close to separate (the\n\
* problem is very ill-conditioned);\n\
* = N+2: after reordering, roundoff changed values of\n\
* some complex eigenvalues so that leading\n\
* eigenvalues in the Schur form no longer satisfy\n\
* SELECT = .TRUE.. This could also be caused by\n\
* underflow due to scaling.\n\
*\n\n\
* =====================================================================\n\
*\n"
|