1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
---
:name: zlahrd
:md5sum: a88d81f8a9f0ae03b94abf04574ebfc7
:category: :subroutine
:arguments:
- n:
:type: integer
:intent: input
- k:
:type: integer
:intent: input
- nb:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input/output
:dims:
- lda
- n-k+1
- lda:
:type: integer
:intent: input
- tau:
:type: doublecomplex
:intent: output
:dims:
- MAX(1,nb)
- t:
:type: doublecomplex
:intent: output
:dims:
- ldt
- MAX(1,nb)
- ldt:
:type: integer
:intent: input
- y:
:type: doublecomplex
:intent: output
:dims:
- ldy
- MAX(1,nb)
- ldy:
:type: integer
:intent: input
:substitutions:
ldy: MAX(1,n)
ldt: nb
:fortran_help: " SUBROUTINE ZLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZLAHRD reduces the first NB columns of a complex general n-by-(n-k+1)\n\
* matrix A so that elements below the k-th subdiagonal are zero. The\n\
* reduction is performed by a unitary similarity transformation\n\
* Q' * A * Q. The routine returns the matrices V and T which determine\n\
* Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T.\n\
*\n\
* This is an OBSOLETE auxiliary routine. \n\
* This routine will be 'deprecated' in a future release.\n\
* Please use the new routine ZLAHR2 instead.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A.\n\
*\n\
* K (input) INTEGER\n\
* The offset for the reduction. Elements below the k-th\n\
* subdiagonal in the first NB columns are reduced to zero.\n\
*\n\
* NB (input) INTEGER\n\
* The number of columns to be reduced.\n\
*\n\
* A (input/output) COMPLEX*16 array, dimension (LDA,N-K+1)\n\
* On entry, the n-by-(n-k+1) general matrix A.\n\
* On exit, the elements on and above the k-th subdiagonal in\n\
* the first NB columns are overwritten with the corresponding\n\
* elements of the reduced matrix; the elements below the k-th\n\
* subdiagonal, with the array TAU, represent the matrix Q as a\n\
* product of elementary reflectors. The other columns of A are\n\
* unchanged. See Further Details.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* TAU (output) COMPLEX*16 array, dimension (NB)\n\
* The scalar factors of the elementary reflectors. See Further\n\
* Details.\n\
*\n\
* T (output) COMPLEX*16 array, dimension (LDT,NB)\n\
* The upper triangular matrix T.\n\
*\n\
* LDT (input) INTEGER\n\
* The leading dimension of the array T. LDT >= NB.\n\
*\n\
* Y (output) COMPLEX*16 array, dimension (LDY,NB)\n\
* The n-by-nb matrix Y.\n\
*\n\
* LDY (input) INTEGER\n\
* The leading dimension of the array Y. LDY >= max(1,N).\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* The matrix Q is represented as a product of nb elementary reflectors\n\
*\n\
* Q = H(1) H(2) . . . H(nb).\n\
*\n\
* Each H(i) has the form\n\
*\n\
* H(i) = I - tau * v * v'\n\
*\n\
* where tau is a complex scalar, and v is a complex vector with\n\
* v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in\n\
* A(i+k+1:n,i), and tau in TAU(i).\n\
*\n\
* The elements of the vectors v together form the (n-k+1)-by-nb matrix\n\
* V which is needed, with T and Y, to apply the transformation to the\n\
* unreduced part of the matrix, using an update of the form:\n\
* A := (I - V*T*V') * (A - Y*V').\n\
*\n\
* The contents of A on exit are illustrated by the following example\n\
* with n = 7, k = 3 and nb = 2:\n\
*\n\
* ( a h a a a )\n\
* ( a h a a a )\n\
* ( a h a a a )\n\
* ( h h a a a )\n\
* ( v1 h a a a )\n\
* ( v1 v2 a a a )\n\
* ( v1 v2 a a a )\n\
*\n\
* where a denotes an element of the original matrix A, h denotes a\n\
* modified element of the upper Hessenberg matrix H, and vi denotes an\n\
* element of the vector defining H(i).\n\
*\n\
* =====================================================================\n\
*\n"
|