1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
---
:name: zlaqps
:md5sum: a668f9d3c711ffd359dd258d703585bb
:category: :subroutine
:arguments:
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- offset:
:type: integer
:intent: input
- nb:
:type: integer
:intent: input
- kb:
:type: integer
:intent: output
- a:
:type: doublecomplex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- jpvt:
:type: integer
:intent: input/output
:dims:
- n
- tau:
:type: doublecomplex
:intent: output
:dims:
- kb
- vn1:
:type: doublereal
:intent: input/output
:dims:
- n
- vn2:
:type: doublereal
:intent: input/output
:dims:
- n
- auxv:
:type: doublecomplex
:intent: input/output
:dims:
- nb
- f:
:type: doublecomplex
:intent: input/output
:dims:
- ldf
- nb
- ldf:
:type: integer
:intent: input
:substitutions:
kb: nb
:fortran_help: " SUBROUTINE ZLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1, VN2, AUXV, F, LDF )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZLAQPS computes a step of QR factorization with column pivoting\n\
* of a complex M-by-N matrix A by using Blas-3. It tries to factorize\n\
* NB columns from A starting from the row OFFSET+1, and updates all\n\
* of the matrix with Blas-3 xGEMM.\n\
*\n\
* In some cases, due to catastrophic cancellations, it cannot\n\
* factorize NB columns. Hence, the actual number of factorized\n\
* columns is returned in KB.\n\
*\n\
* Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix A. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix A. N >= 0\n\
*\n\
* OFFSET (input) INTEGER\n\
* The number of rows of A that have been factorized in\n\
* previous steps.\n\
*\n\
* NB (input) INTEGER\n\
* The number of columns to factorize.\n\
*\n\
* KB (output) INTEGER\n\
* The number of columns actually factorized.\n\
*\n\
* A (input/output) COMPLEX*16 array, dimension (LDA,N)\n\
* On entry, the M-by-N matrix A.\n\
* On exit, block A(OFFSET+1:M,1:KB) is the triangular\n\
* factor obtained and block A(1:OFFSET,1:N) has been\n\
* accordingly pivoted, but no factorized.\n\
* The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has\n\
* been updated.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* JPVT (input/output) INTEGER array, dimension (N)\n\
* JPVT(I) = K <==> Column K of the full matrix A has been\n\
* permuted into position I in AP.\n\
*\n\
* TAU (output) COMPLEX*16 array, dimension (KB)\n\
* The scalar factors of the elementary reflectors.\n\
*\n\
* VN1 (input/output) DOUBLE PRECISION array, dimension (N)\n\
* The vector with the partial column norms.\n\
*\n\
* VN2 (input/output) DOUBLE PRECISION array, dimension (N)\n\
* The vector with the exact column norms.\n\
*\n\
* AUXV (input/output) COMPLEX*16 array, dimension (NB)\n\
* Auxiliar vector.\n\
*\n\
* F (input/output) COMPLEX*16 array, dimension (LDF,NB)\n\
* Matrix F' = L*Y'*A.\n\
*\n\
* LDF (input) INTEGER\n\
* The leading dimension of the array F. LDF >= max(1,N).\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain\n\
* X. Sun, Computer Science Dept., Duke University, USA\n\
*\n\
* =====================================================================\n\
*\n"
|