1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
---
:name: zunml2
:md5sum: e27ef006d74c26f3884a48ee719ffdda
:category: :subroutine
:arguments:
- side:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- k:
:type: integer
:intent: input
- a:
:type: doublecomplex
:intent: input
:dims:
- lda
- m
- lda:
:type: integer
:intent: input
- tau:
:type: doublecomplex
:intent: input
:dims:
- k
- c:
:type: doublecomplex
:intent: input/output
:dims:
- ldc
- n
- ldc:
:type: integer
:intent: input
- work:
:type: doublecomplex
:intent: workspace
:dims:
- "lsame_(&side,\"L\") ? n : lsame_(&side,\"R\") ? m : 0"
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE ZUNML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* ZUNML2 overwrites the general complex m-by-n matrix C with\n\
*\n\
* Q * C if SIDE = 'L' and TRANS = 'N', or\n\
*\n\
* Q'* C if SIDE = 'L' and TRANS = 'C', or\n\
*\n\
* C * Q if SIDE = 'R' and TRANS = 'N', or\n\
*\n\
* C * Q' if SIDE = 'R' and TRANS = 'C',\n\
*\n\
* where Q is a complex unitary matrix defined as the product of k\n\
* elementary reflectors\n\
*\n\
* Q = H(k)' . . . H(2)' H(1)'\n\
*\n\
* as returned by ZGELQF. Q is of order m if SIDE = 'L' and of order n\n\
* if SIDE = 'R'.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* = 'L': apply Q or Q' from the Left\n\
* = 'R': apply Q or Q' from the Right\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* = 'N': apply Q (No transpose)\n\
* = 'C': apply Q' (Conjugate transpose)\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix C. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix C. N >= 0.\n\
*\n\
* K (input) INTEGER\n\
* The number of elementary reflectors whose product defines\n\
* the matrix Q.\n\
* If SIDE = 'L', M >= K >= 0;\n\
* if SIDE = 'R', N >= K >= 0.\n\
*\n\
* A (input) COMPLEX*16 array, dimension\n\
* (LDA,M) if SIDE = 'L',\n\
* (LDA,N) if SIDE = 'R'\n\
* The i-th row must contain the vector which defines the\n\
* elementary reflector H(i), for i = 1,2,...,k, as returned by\n\
* ZGELQF in the first k rows of its array argument A.\n\
* A is modified by the routine but restored on exit.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,K).\n\
*\n\
* TAU (input) COMPLEX*16 array, dimension (K)\n\
* TAU(i) must contain the scalar factor of the elementary\n\
* reflector H(i), as returned by ZGELQF.\n\
*\n\
* C (input/output) COMPLEX*16 array, dimension (LDC,N)\n\
* On entry, the m-by-n matrix C.\n\
* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.\n\
*\n\
* LDC (input) INTEGER\n\
* The leading dimension of the array C. LDC >= max(1,M).\n\
*\n\
* WORK (workspace) COMPLEX*16 array, dimension\n\
* (N) if SIDE = 'L',\n\
* (M) if SIDE = 'R'\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* =====================================================================\n\
*\n"
|