1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
#include "rb_lapack.h"
extern VOID cgeev_(char* jobvl, char* jobvr, integer* n, complex* a, integer* lda, complex* w, complex* vl, integer* ldvl, complex* vr, integer* ldvr, complex* work, integer* lwork, real* rwork, integer* info);
static VALUE
rblapack_cgeev(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobvl;
char jobvl;
VALUE rblapack_jobvr;
char jobvr;
VALUE rblapack_a;
complex *a;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_w;
complex *w;
VALUE rblapack_vl;
complex *vl;
VALUE rblapack_vr;
complex *vr;
VALUE rblapack_work;
complex *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
complex *a_out__;
real *rwork;
integer lda;
integer n;
integer ldvl;
integer ldvr;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n w, vl, vr, work, info, a = NumRu::Lapack.cgeev( jobvl, jobvr, a, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* CGEEV computes for an N-by-N complex nonsymmetric matrix A, the\n* eigenvalues and, optionally, the left and/or right eigenvectors.\n*\n* The right eigenvector v(j) of A satisfies\n* A * v(j) = lambda(j) * v(j)\n* where lambda(j) is its eigenvalue.\n* The left eigenvector u(j) of A satisfies\n* u(j)**H * A = lambda(j) * u(j)**H\n* where u(j)**H denotes the conjugate transpose of u(j).\n*\n* The computed eigenvectors are normalized to have Euclidean norm\n* equal to 1 and largest component real.\n*\n\n* Arguments\n* =========\n*\n* JOBVL (input) CHARACTER*1\n* = 'N': left eigenvectors of A are not computed;\n* = 'V': left eigenvectors of are computed.\n*\n* JOBVR (input) CHARACTER*1\n* = 'N': right eigenvectors of A are not computed;\n* = 'V': right eigenvectors of A are computed.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* A (input/output) COMPLEX array, dimension (LDA,N)\n* On entry, the N-by-N matrix A.\n* On exit, A has been overwritten.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* W (output) COMPLEX array, dimension (N)\n* W contains the computed eigenvalues.\n*\n* VL (output) COMPLEX array, dimension (LDVL,N)\n* If JOBVL = 'V', the left eigenvectors u(j) are stored one\n* after another in the columns of VL, in the same order\n* as their eigenvalues.\n* If JOBVL = 'N', VL is not referenced.\n* u(j) = VL(:,j), the j-th column of VL.\n*\n* LDVL (input) INTEGER\n* The leading dimension of the array VL. LDVL >= 1; if\n* JOBVL = 'V', LDVL >= N.\n*\n* VR (output) COMPLEX array, dimension (LDVR,N)\n* If JOBVR = 'V', the right eigenvectors v(j) are stored one\n* after another in the columns of VR, in the same order\n* as their eigenvalues.\n* If JOBVR = 'N', VR is not referenced.\n* v(j) = VR(:,j), the j-th column of VR.\n*\n* LDVR (input) INTEGER\n* The leading dimension of the array VR. LDVR >= 1; if\n* JOBVR = 'V', LDVR >= N.\n*\n* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= max(1,2*N).\n* For good performance, LWORK must generally be larger.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* RWORK (workspace) REAL array, dimension (2*N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: if INFO = i, the QR algorithm failed to compute all the\n* eigenvalues, and no eigenvectors have been computed;\n* elements and i+1:N of W contain eigenvalues which have\n* converged.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n w, vl, vr, work, info, a = NumRu::Lapack.cgeev( jobvl, jobvr, a, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_jobvl = argv[0];
rblapack_jobvr = argv[1];
rblapack_a = argv[2];
if (argc == 4) {
rblapack_lwork = argv[3];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
jobvl = StringValueCStr(rblapack_jobvl)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
ldvl = lsame_(&jobvl,"V") ? n : 1;
jobvr = StringValueCStr(rblapack_jobvr)[0];
ldvr = lsame_(&jobvr,"V") ? n : 1;
if (rblapack_lwork == Qnil)
lwork = 2*n;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, complex*);
{
na_shape_t shape[2];
shape[0] = ldvl;
shape[1] = n;
rblapack_vl = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
vl = NA_PTR_TYPE(rblapack_vl, complex*);
{
na_shape_t shape[2];
shape[0] = ldvr;
shape[1] = n;
rblapack_vr = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
vr = NA_PTR_TYPE(rblapack_vr, complex*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, complex*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
MEMCPY(a_out__, a, complex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
rwork = ALLOC_N(real, (2*n));
cgeev_(&jobvl, &jobvr, &n, a, &lda, w, vl, &ldvl, vr, &ldvr, work, &lwork, rwork, &info);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(6, rblapack_w, rblapack_vl, rblapack_vr, rblapack_work, rblapack_info, rblapack_a);
}
void
init_lapack_cgeev(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cgeev", rblapack_cgeev, -1);
}
|