1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
#include "rb_lapack.h"
extern VOID cgetf2_(integer* m, integer* n, complex* a, integer* lda, integer* ipiv, integer* info);
static VALUE
rblapack_cgetf2(int argc, VALUE *argv, VALUE self){
VALUE rblapack_m;
integer m;
VALUE rblapack_a;
complex *a;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
complex *a_out__;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n ipiv, info, a = NumRu::Lapack.cgetf2( m, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CGETF2( M, N, A, LDA, IPIV, INFO )\n\n* Purpose\n* =======\n*\n* CGETF2 computes an LU factorization of a general m-by-n matrix A\n* using partial pivoting with row interchanges.\n*\n* The factorization has the form\n* A = P * L * U\n* where P is a permutation matrix, L is lower triangular with unit\n* diagonal elements (lower trapezoidal if m > n), and U is upper\n* triangular (upper trapezoidal if m < n).\n*\n* This is the right-looking Level 2 BLAS version of the algorithm.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0.\n*\n* A (input/output) COMPLEX array, dimension (LDA,N)\n* On entry, the m by n matrix to be factored.\n* On exit, the factors L and U from the factorization\n* A = P*L*U; the unit diagonal elements of L are not stored.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* IPIV (output) INTEGER array, dimension (min(M,N))\n* The pivot indices; for 1 <= i <= min(M,N), row i of the\n* matrix was interchanged with row IPIV(i).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -k, the k-th argument had an illegal value\n* > 0: if INFO = k, U(k,k) is exactly zero. The factorization\n* has been completed, but the factor U is exactly\n* singular, and division by zero will occur if it is used\n* to solve a system of equations.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n ipiv, info, a = NumRu::Lapack.cgetf2( m, a, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_m = argv[0];
rblapack_a = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
m = NUM2INT(rblapack_m);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
{
na_shape_t shape[1];
shape[0] = MIN(m,n);
rblapack_ipiv = na_make_object(NA_LINT, 1, shape, cNArray);
}
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
MEMCPY(a_out__, a, complex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
cgetf2_(&m, &n, a, &lda, ipiv, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_ipiv, rblapack_info, rblapack_a);
}
void
init_lapack_cgetf2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "cgetf2", rblapack_cgetf2, -1);
}
|