File: cgghrd.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (167 lines) | stat: -rw-r--r-- 10,087 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#include "rb_lapack.h"

extern VOID cgghrd_(char* compq, char* compz, integer* n, integer* ilo, integer* ihi, complex* a, integer* lda, complex* b, integer* ldb, complex* q, integer* ldq, complex* z, integer* ldz, integer* info);


static VALUE
rblapack_cgghrd(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_compq;
  char compq; 
  VALUE rblapack_compz;
  char compz; 
  VALUE rblapack_ilo;
  integer ilo; 
  VALUE rblapack_ihi;
  integer ihi; 
  VALUE rblapack_a;
  complex *a; 
  VALUE rblapack_b;
  complex *b; 
  VALUE rblapack_q;
  complex *q; 
  VALUE rblapack_z;
  complex *z; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  complex *a_out__;
  VALUE rblapack_b_out__;
  complex *b_out__;
  VALUE rblapack_q_out__;
  complex *q_out__;
  VALUE rblapack_z_out__;
  complex *z_out__;

  integer lda;
  integer n;
  integer ldb;
  integer ldq;
  integer ldz;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, a, b, q, z = NumRu::Lapack.cgghrd( compq, compz, ilo, ihi, a, b, q, z, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE CGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO )\n\n*  Purpose\n*  =======\n*\n*  CGGHRD reduces a pair of complex matrices (A,B) to generalized upper\n*  Hessenberg form using unitary transformations, where A is a\n*  general matrix and B is upper triangular.  The form of the generalized\n*  eigenvalue problem is\n*     A*x = lambda*B*x,\n*  and B is typically made upper triangular by computing its QR\n*  factorization and moving the unitary matrix Q to the left side\n*  of the equation.\n*\n*  This subroutine simultaneously reduces A to a Hessenberg matrix H:\n*     Q**H*A*Z = H\n*  and transforms B to another upper triangular matrix T:\n*     Q**H*B*Z = T\n*  in order to reduce the problem to its standard form\n*     H*y = lambda*T*y\n*  where y = Z**H*x.\n*\n*  The unitary matrices Q and Z are determined as products of Givens\n*  rotations.  They may either be formed explicitly, or they may be\n*  postmultiplied into input matrices Q1 and Z1, so that\n*       Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H\n*       Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H\n*  If Q1 is the unitary matrix from the QR factorization of B in the\n*  original equation A*x = lambda*B*x, then CGGHRD reduces the original\n*  problem to generalized Hessenberg form.\n*\n\n*  Arguments\n*  =========\n*\n*  COMPQ   (input) CHARACTER*1\n*          = 'N': do not compute Q;\n*          = 'I': Q is initialized to the unit matrix, and the\n*                 unitary matrix Q is returned;\n*          = 'V': Q must contain a unitary matrix Q1 on entry,\n*                 and the product Q1*Q is returned.\n*\n*  COMPZ   (input) CHARACTER*1\n*          = 'N': do not compute Q;\n*          = 'I': Q is initialized to the unit matrix, and the\n*                 unitary matrix Q is returned;\n*          = 'V': Q must contain a unitary matrix Q1 on entry,\n*                 and the product Q1*Q is returned.\n*\n*  N       (input) INTEGER\n*          The order of the matrices A and B.  N >= 0.\n*\n*  ILO     (input) INTEGER\n*  IHI     (input) INTEGER\n*          ILO and IHI mark the rows and columns of A which are to be\n*          reduced.  It is assumed that A is already upper triangular\n*          in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are\n*          normally set by a previous call to CGGBAL; otherwise they\n*          should be set to 1 and N respectively.\n*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.\n*\n*  A       (input/output) COMPLEX array, dimension (LDA, N)\n*          On entry, the N-by-N general matrix to be reduced.\n*          On exit, the upper triangle and the first subdiagonal of A\n*          are overwritten with the upper Hessenberg matrix H, and the\n*          rest is set to zero.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,N).\n*\n*  B       (input/output) COMPLEX array, dimension (LDB, N)\n*          On entry, the N-by-N upper triangular matrix B.\n*          On exit, the upper triangular matrix T = Q**H B Z.  The\n*          elements below the diagonal are set to zero.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  Q       (input/output) COMPLEX array, dimension (LDQ, N)\n*          On entry, if COMPQ = 'V', the unitary matrix Q1, typically\n*          from the QR factorization of B.\n*          On exit, if COMPQ='I', the unitary matrix Q, and if\n*          COMPQ = 'V', the product Q1*Q.\n*          Not referenced if COMPQ='N'.\n*\n*  LDQ     (input) INTEGER\n*          The leading dimension of the array Q.\n*          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.\n*\n*  Z       (input/output) COMPLEX array, dimension (LDZ, N)\n*          On entry, if COMPZ = 'V', the unitary matrix Z1.\n*          On exit, if COMPZ='I', the unitary matrix Z, and if\n*          COMPZ = 'V', the product Z1*Z.\n*          Not referenced if COMPZ='N'.\n*\n*  LDZ     (input) INTEGER\n*          The leading dimension of the array Z.\n*          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit.\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*\n\n*  Further Details\n*  ===============\n*\n*  This routine reduces A to Hessenberg and B to triangular form by\n*  an unblocked reduction, as described in _Matrix_Computations_,\n*  by Golub and van Loan (Johns Hopkins Press).\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, a, b, q, z = NumRu::Lapack.cgghrd( compq, compz, ilo, ihi, a, b, q, z, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 8 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
  rblapack_compq = argv[0];
  rblapack_compz = argv[1];
  rblapack_ilo = argv[2];
  rblapack_ihi = argv[3];
  rblapack_a = argv[4];
  rblapack_b = argv[5];
  rblapack_q = argv[6];
  rblapack_z = argv[7];
  if (argc == 8) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  compq = StringValueCStr(rblapack_compq)[0];
  ilo = NUM2INT(rblapack_ilo);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (5th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (5th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, complex*);
  if (!NA_IsNArray(rblapack_q))
    rb_raise(rb_eArgError, "q (7th argument) must be NArray");
  if (NA_RANK(rblapack_q) != 2)
    rb_raise(rb_eArgError, "rank of q (7th argument) must be %d", 2);
  ldq = NA_SHAPE0(rblapack_q);
  if (NA_SHAPE1(rblapack_q) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of q must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_q) != NA_SCOMPLEX)
    rblapack_q = na_change_type(rblapack_q, NA_SCOMPLEX);
  q = NA_PTR_TYPE(rblapack_q, complex*);
  compz = StringValueCStr(rblapack_compz)[0];
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (6th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (6th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, complex*);
  ihi = NUM2INT(rblapack_ihi);
  if (!NA_IsNArray(rblapack_z))
    rb_raise(rb_eArgError, "z (8th argument) must be NArray");
  if (NA_RANK(rblapack_z) != 2)
    rb_raise(rb_eArgError, "rank of z (8th argument) must be %d", 2);
  ldz = NA_SHAPE0(rblapack_z);
  if (NA_SHAPE1(rblapack_z) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of z must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_z) != NA_SCOMPLEX)
    rblapack_z = na_change_type(rblapack_z, NA_SCOMPLEX);
  z = NA_PTR_TYPE(rblapack_z, complex*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
  MEMCPY(a_out__, a, complex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = n;
    rblapack_b_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, complex*);
  MEMCPY(b_out__, b, complex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldq;
    shape[1] = n;
    rblapack_q_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  q_out__ = NA_PTR_TYPE(rblapack_q_out__, complex*);
  MEMCPY(q_out__, q, complex, NA_TOTAL(rblapack_q));
  rblapack_q = rblapack_q_out__;
  q = q_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldz;
    shape[1] = n;
    rblapack_z_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
  }
  z_out__ = NA_PTR_TYPE(rblapack_z_out__, complex*);
  MEMCPY(z_out__, z, complex, NA_TOTAL(rblapack_z));
  rblapack_z = rblapack_z_out__;
  z = z_out__;

  cgghrd_(&compq, &compz, &n, &ilo, &ihi, a, &lda, b, &ldb, q, &ldq, z, &ldz, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(5, rblapack_info, rblapack_a, rblapack_b, rblapack_q, rblapack_z);
}

void
init_lapack_cgghrd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "cgghrd", rblapack_cgghrd, -1);
}