File: cla_gbrcond_c.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (142 lines) | stat: -rw-r--r-- 8,602 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#include "rb_lapack.h"

extern real cla_gbrcond_c_(char* trans, integer* n, integer* kl, integer* ku, complex* ab, integer* ldab, complex* afb, integer* ldafb, integer* ipiv, real* c, logical* capply, integer* info, complex* work, real* rwork);


static VALUE
rblapack_cla_gbrcond_c(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_trans;
  char trans; 
  VALUE rblapack_kl;
  integer kl; 
  VALUE rblapack_ku;
  integer ku; 
  VALUE rblapack_ab;
  complex *ab; 
  VALUE rblapack_afb;
  complex *afb; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_c;
  real *c; 
  VALUE rblapack_capply;
  logical capply; 
  VALUE rblapack_work;
  complex *work; 
  VALUE rblapack_rwork;
  real *rwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack___out__;
  real __out__; 

  integer ldab;
  integer n;
  integer ldafb;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, __out__ = NumRu::Lapack.cla_gbrcond_c( trans, kl, ku, ab, afb, ipiv, c, capply, work, rwork, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      REAL FUNCTION CLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB, LDAFB, IPIV, C, CAPPLY, INFO, WORK, RWORK )\n\n*  Purpose\n*  =======\n*\n*     CLA_GBRCOND_C Computes the infinity norm condition number of\n*     op(A) * inv(diag(C)) where C is a REAL vector.\n*\n\n*  Arguments\n*  =========\n*\n*     TRANS   (input) CHARACTER*1\n*     Specifies the form of the system of equations:\n*       = 'N':  A * X = B     (No transpose)\n*       = 'T':  A**T * X = B  (Transpose)\n*       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)\n*\n*     N       (input) INTEGER\n*     The number of linear equations, i.e., the order of the\n*     matrix A.  N >= 0.\n*\n*     KL      (input) INTEGER\n*     The number of subdiagonals within the band of A.  KL >= 0.\n*\n*     KU      (input) INTEGER\n*     The number of superdiagonals within the band of A.  KU >= 0.\n*\n*     AB      (input) COMPLEX array, dimension (LDAB,N)\n*     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.\n*     The j-th column of A is stored in the j-th column of the\n*     array AB as follows:\n*     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)\n*\n*     LDAB    (input) INTEGER\n*     The leading dimension of the array AB.  LDAB >= KL+KU+1.\n*\n*     AFB     (input) COMPLEX array, dimension (LDAFB,N)\n*     Details of the LU factorization of the band matrix A, as\n*     computed by CGBTRF.  U is stored as an upper triangular\n*     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,\n*     and the multipliers used during the factorization are stored\n*     in rows KL+KU+2 to 2*KL+KU+1.\n*\n*     LDAFB   (input) INTEGER\n*     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.\n*\n*     IPIV    (input) INTEGER array, dimension (N)\n*     The pivot indices from the factorization A = P*L*U\n*     as computed by CGBTRF; row i of the matrix was interchanged\n*     with row IPIV(i).\n*\n*     C       (input) REAL array, dimension (N)\n*     The vector C in the formula op(A) * inv(diag(C)).\n*\n*     CAPPLY  (input) LOGICAL\n*     If .TRUE. then access the vector C in the formula above.\n*\n*     INFO    (output) INTEGER\n*       = 0:  Successful exit.\n*     i > 0:  The ith argument is invalid.\n*\n*     WORK    (input) COMPLEX array, dimension (2*N).\n*     Workspace.\n*\n*     RWORK   (input) REAL array, dimension (N).\n*     Workspace.\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      LOGICAL            NOTRANS\n      INTEGER            KASE, I, J\n      REAL               AINVNM, ANORM, TMP\n      COMPLEX            ZDUM\n*     ..\n*     .. Local Arrays ..\n      INTEGER            ISAVE( 3 )\n*     ..\n*     .. External Functions ..\n      LOGICAL            LSAME\n      EXTERNAL           LSAME\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           CLACN2, CGBTRS, XERBLA\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          ABS, MAX\n*     ..\n*     .. Statement Functions ..\n      REAL               CABS1\n*     ..\n*     .. Statement Function Definitions ..\n      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, __out__ = NumRu::Lapack.cla_gbrcond_c( trans, kl, ku, ab, afb, ipiv, c, capply, work, rwork, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 10 && argc != 10)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 10)", argc);
  rblapack_trans = argv[0];
  rblapack_kl = argv[1];
  rblapack_ku = argv[2];
  rblapack_ab = argv[3];
  rblapack_afb = argv[4];
  rblapack_ipiv = argv[5];
  rblapack_c = argv[6];
  rblapack_capply = argv[7];
  rblapack_work = argv[8];
  rblapack_rwork = argv[9];
  if (argc == 10) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  trans = StringValueCStr(rblapack_trans)[0];
  ku = NUM2INT(rblapack_ku);
  if (!NA_IsNArray(rblapack_afb))
    rb_raise(rb_eArgError, "afb (5th argument) must be NArray");
  if (NA_RANK(rblapack_afb) != 2)
    rb_raise(rb_eArgError, "rank of afb (5th argument) must be %d", 2);
  ldafb = NA_SHAPE0(rblapack_afb);
  n = NA_SHAPE1(rblapack_afb);
  if (NA_TYPE(rblapack_afb) != NA_SCOMPLEX)
    rblapack_afb = na_change_type(rblapack_afb, NA_SCOMPLEX);
  afb = NA_PTR_TYPE(rblapack_afb, complex*);
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (7th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 1)
    rb_raise(rb_eArgError, "rank of c (7th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_c) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of c must be the same as shape 1 of afb");
  if (NA_TYPE(rblapack_c) != NA_SFLOAT)
    rblapack_c = na_change_type(rblapack_c, NA_SFLOAT);
  c = NA_PTR_TYPE(rblapack_c, real*);
  if (!NA_IsNArray(rblapack_rwork))
    rb_raise(rb_eArgError, "rwork (10th argument) must be NArray");
  if (NA_RANK(rblapack_rwork) != 1)
    rb_raise(rb_eArgError, "rank of rwork (10th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_rwork) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of rwork must be the same as shape 1 of afb");
  if (NA_TYPE(rblapack_rwork) != NA_SFLOAT)
    rblapack_rwork = na_change_type(rblapack_rwork, NA_SFLOAT);
  rwork = NA_PTR_TYPE(rblapack_rwork, real*);
  kl = NUM2INT(rblapack_kl);
  if (!NA_IsNArray(rblapack_ipiv))
    rb_raise(rb_eArgError, "ipiv (6th argument) must be NArray");
  if (NA_RANK(rblapack_ipiv) != 1)
    rb_raise(rb_eArgError, "rank of ipiv (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_ipiv) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 1 of afb");
  if (NA_TYPE(rblapack_ipiv) != NA_LINT)
    rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (4th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (4th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  if (NA_SHAPE1(rblapack_ab) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of ab must be the same as shape 1 of afb");
  if (NA_TYPE(rblapack_ab) != NA_SCOMPLEX)
    rblapack_ab = na_change_type(rblapack_ab, NA_SCOMPLEX);
  ab = NA_PTR_TYPE(rblapack_ab, complex*);
  if (!NA_IsNArray(rblapack_work))
    rb_raise(rb_eArgError, "work (9th argument) must be NArray");
  if (NA_RANK(rblapack_work) != 1)
    rb_raise(rb_eArgError, "rank of work (9th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_work) != (2*n))
    rb_raise(rb_eRuntimeError, "shape 0 of work must be %d", 2*n);
  if (NA_TYPE(rblapack_work) != NA_SCOMPLEX)
    rblapack_work = na_change_type(rblapack_work, NA_SCOMPLEX);
  work = NA_PTR_TYPE(rblapack_work, complex*);
  capply = (rblapack_capply == Qtrue);

  __out__ = cla_gbrcond_c_(&trans, &n, &kl, &ku, ab, &ldab, afb, &ldafb, ipiv, c, &capply, &info, work, rwork);

  rblapack_info = INT2NUM(info);
  rblapack___out__ = rb_float_new((double)__out__);
  return rb_ary_new3(2, rblapack_info, rblapack___out__);
}

void
init_lapack_cla_gbrcond_c(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "cla_gbrcond_c", rblapack_cla_gbrcond_c, -1);
}