1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
#include "rb_lapack.h"
extern VOID clacgv_(integer* n, complex* x, integer* incx);
static VALUE
rblapack_clacgv(int argc, VALUE *argv, VALUE self){
VALUE rblapack_n;
integer n;
VALUE rblapack_x;
complex *x;
VALUE rblapack_incx;
integer incx;
VALUE rblapack_x_out__;
complex *x_out__;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n x = NumRu::Lapack.clacgv( n, x, incx, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CLACGV( N, X, INCX )\n\n* Purpose\n* =======\n*\n* CLACGV conjugates a complex vector of length N.\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The length of the vector X. N >= 0.\n*\n* X (input/output) COMPLEX array, dimension\n* (1+(N-1)*abs(INCX))\n* On entry, the vector of length N to be conjugated.\n* On exit, X is overwritten with conjg(X).\n*\n* INCX (input) INTEGER\n* The spacing between successive elements of X.\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n INTEGER I, IOFF\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC CONJG\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n x = NumRu::Lapack.clacgv( n, x, incx, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 3)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_n = argv[0];
rblapack_x = argv[1];
rblapack_incx = argv[2];
if (argc == 3) {
} else if (rblapack_options != Qnil) {
} else {
}
n = NUM2INT(rblapack_n);
incx = NUM2INT(rblapack_incx);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (2th argument) must be NArray");
if (NA_RANK(rblapack_x) != 1)
rb_raise(rb_eArgError, "rank of x (2th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_x) != (1+(n-1)*abs(incx)))
rb_raise(rb_eRuntimeError, "shape 0 of x must be %d", 1+(n-1)*abs(incx));
if (NA_TYPE(rblapack_x) != NA_SCOMPLEX)
rblapack_x = na_change_type(rblapack_x, NA_SCOMPLEX);
x = NA_PTR_TYPE(rblapack_x, complex*);
{
na_shape_t shape[1];
shape[0] = 1+(n-1)*abs(incx);
rblapack_x_out__ = na_make_object(NA_SCOMPLEX, 1, shape, cNArray);
}
x_out__ = NA_PTR_TYPE(rblapack_x_out__, complex*);
MEMCPY(x_out__, x, complex, NA_TOTAL(rblapack_x));
rblapack_x = rblapack_x_out__;
x = x_out__;
clacgv_(&n, x, &incx);
return rblapack_x;
}
void
init_lapack_clacgv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "clacgv", rblapack_clacgv, -1);
}
|