1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
#include "rb_lapack.h"
extern VOID clag2z_(integer* m, integer* n, complex* sa, integer* ldsa, doublecomplex* a, integer* lda, integer* info);
static VALUE
rblapack_clag2z(int argc, VALUE *argv, VALUE self){
VALUE rblapack_m;
integer m;
VALUE rblapack_sa;
complex *sa;
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack_info;
integer info;
integer ldsa;
integer n;
integer lda;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n a, info = NumRu::Lapack.clag2z( m, sa, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CLAG2Z( M, N, SA, LDSA, A, LDA, INFO )\n\n* Purpose\n* =======\n*\n* CLAG2Z converts a COMPLEX matrix, SA, to a COMPLEX*16 matrix, A.\n*\n* Note that while it is possible to overflow while converting\n* from double to single, it is not possible to overflow when\n* converting from single to double.\n*\n* This is an auxiliary routine so there is no argument checking.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of lines of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0.\n*\n* SA (input) COMPLEX array, dimension (LDSA,N)\n* On entry, the M-by-N coefficient matrix SA.\n*\n* LDSA (input) INTEGER\n* The leading dimension of the array SA. LDSA >= max(1,M).\n*\n* A (output) COMPLEX*16 array, dimension (LDA,N)\n* On exit, the M-by-N coefficient matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* =========\n*\n* .. Local Scalars ..\n INTEGER I, J\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n a, info = NumRu::Lapack.clag2z( m, sa, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_m = argv[0];
rblapack_sa = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
m = NUM2INT(rblapack_m);
lda = MAX(1,m);
if (!NA_IsNArray(rblapack_sa))
rb_raise(rb_eArgError, "sa (2th argument) must be NArray");
if (NA_RANK(rblapack_sa) != 2)
rb_raise(rb_eArgError, "rank of sa (2th argument) must be %d", 2);
ldsa = NA_SHAPE0(rblapack_sa);
n = NA_SHAPE1(rblapack_sa);
if (NA_TYPE(rblapack_sa) != NA_SCOMPLEX)
rblapack_sa = na_change_type(rblapack_sa, NA_SCOMPLEX);
sa = NA_PTR_TYPE(rblapack_sa, complex*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
clag2z_(&m, &n, sa, &ldsa, a, &lda, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_a, rblapack_info);
}
void
init_lapack_clag2z(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "clag2z", rblapack_clag2z, -1);
}
|