1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
#include "rb_lapack.h"
extern VOID ctgexc_(logical* wantq, logical* wantz, integer* n, complex* a, integer* lda, complex* b, integer* ldb, complex* q, integer* ldq, complex* z, integer* ldz, integer* ifst, integer* ilst, integer* info);
static VALUE
rblapack_ctgexc(int argc, VALUE *argv, VALUE self){
VALUE rblapack_wantq;
logical wantq;
VALUE rblapack_wantz;
logical wantz;
VALUE rblapack_a;
complex *a;
VALUE rblapack_b;
complex *b;
VALUE rblapack_q;
complex *q;
VALUE rblapack_ldq;
integer ldq;
VALUE rblapack_z;
complex *z;
VALUE rblapack_ifst;
integer ifst;
VALUE rblapack_ilst;
integer ilst;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
complex *a_out__;
VALUE rblapack_b_out__;
complex *b_out__;
VALUE rblapack_q_out__;
complex *q_out__;
VALUE rblapack_z_out__;
complex *z_out__;
integer lda;
integer n;
integer ldb;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, a, b, q, z, ilst = NumRu::Lapack.ctgexc( wantq, wantz, a, b, q, ldq, z, ifst, ilst, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE CTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, INFO )\n\n* Purpose\n* =======\n*\n* CTGEXC reorders the generalized Schur decomposition of a complex\n* matrix pair (A,B), using an unitary equivalence transformation\n* (A, B) := Q * (A, B) * Z', so that the diagonal block of (A, B) with\n* row index IFST is moved to row ILST.\n*\n* (A, B) must be in generalized Schur canonical form, that is, A and\n* B are both upper triangular.\n*\n* Optionally, the matrices Q and Z of generalized Schur vectors are\n* updated.\n*\n* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'\n* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'\n*\n\n* Arguments\n* =========\n*\n* WANTQ (input) LOGICAL\n* .TRUE. : update the left transformation matrix Q;\n* .FALSE.: do not update Q.\n*\n* WANTZ (input) LOGICAL\n* .TRUE. : update the right transformation matrix Z;\n* .FALSE.: do not update Z.\n*\n* N (input) INTEGER\n* The order of the matrices A and B. N >= 0.\n*\n* A (input/output) COMPLEX array, dimension (LDA,N)\n* On entry, the upper triangular matrix A in the pair (A, B).\n* On exit, the updated matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* B (input/output) COMPLEX array, dimension (LDB,N)\n* On entry, the upper triangular matrix B in the pair (A, B).\n* On exit, the updated matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* Q (input/output) COMPLEX array, dimension (LDZ,N)\n* On entry, if WANTQ = .TRUE., the unitary matrix Q.\n* On exit, the updated matrix Q.\n* If WANTQ = .FALSE., Q is not referenced.\n*\n* LDQ (input) INTEGER\n* The leading dimension of the array Q. LDQ >= 1;\n* If WANTQ = .TRUE., LDQ >= N.\n*\n* Z (input/output) COMPLEX array, dimension (LDZ,N)\n* On entry, if WANTZ = .TRUE., the unitary matrix Z.\n* On exit, the updated matrix Z.\n* If WANTZ = .FALSE., Z is not referenced.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1;\n* If WANTZ = .TRUE., LDZ >= N.\n*\n* IFST (input) INTEGER\n* ILST (input/output) INTEGER\n* Specify the reordering of the diagonal blocks of (A, B).\n* The block with row index IFST is moved to row ILST, by a\n* sequence of swapping between adjacent blocks.\n*\n* INFO (output) INTEGER\n* =0: Successful exit.\n* <0: if INFO = -i, the i-th argument had an illegal value.\n* =1: The transformed matrix pair (A, B) would be too far\n* from generalized Schur form; the problem is ill-\n* conditioned. (A, B) may have been partially reordered,\n* and ILST points to the first row of the current\n* position of the block being moved.\n*\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n* Umea University, S-901 87 Umea, Sweden.\n*\n* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the\n* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in\n* M.S. Moonen et al (eds), Linear Algebra for Large Scale and\n* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.\n*\n* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified\n* Eigenvalues of a Regular Matrix Pair (A, B) and Condition\n* Estimation: Theory, Algorithms and Software, Report\n* UMINF - 94.04, Department of Computing Science, Umea University,\n* S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.\n* To appear in Numerical Algorithms, 1996.\n*\n* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software\n* for Solving the Generalized Sylvester Equation and Estimating the\n* Separation between Regular Matrix Pairs, Report UMINF - 93.23,\n* Department of Computing Science, Umea University, S-901 87 Umea,\n* Sweden, December 1993, Revised April 1994, Also as LAPACK working\n* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,\n* 1996.\n*\n* =====================================================================\n*\n* .. Local Scalars ..\n INTEGER HERE\n* ..\n* .. External Subroutines ..\n EXTERNAL CTGEX2, XERBLA\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC MAX\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, a, b, q, z, ilst = NumRu::Lapack.ctgexc( wantq, wantz, a, b, q, ldq, z, ifst, ilst, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 9 && argc != 9)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
rblapack_wantq = argv[0];
rblapack_wantz = argv[1];
rblapack_a = argv[2];
rblapack_b = argv[3];
rblapack_q = argv[4];
rblapack_ldq = argv[5];
rblapack_z = argv[6];
rblapack_ifst = argv[7];
rblapack_ilst = argv[8];
if (argc == 9) {
} else if (rblapack_options != Qnil) {
} else {
}
wantq = (rblapack_wantq == Qtrue);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_SCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, complex*);
if (!NA_IsNArray(rblapack_q))
rb_raise(rb_eArgError, "q (5th argument) must be NArray");
if (NA_RANK(rblapack_q) != 2)
rb_raise(rb_eArgError, "rank of q (5th argument) must be %d", 2);
ldz = NA_SHAPE0(rblapack_q);
if (NA_SHAPE1(rblapack_q) != n)
rb_raise(rb_eRuntimeError, "shape 1 of q must be the same as shape 1 of a");
if (NA_TYPE(rblapack_q) != NA_SCOMPLEX)
rblapack_q = na_change_type(rblapack_q, NA_SCOMPLEX);
q = NA_PTR_TYPE(rblapack_q, complex*);
if (!NA_IsNArray(rblapack_z))
rb_raise(rb_eArgError, "z (7th argument) must be NArray");
if (NA_RANK(rblapack_z) != 2)
rb_raise(rb_eArgError, "rank of z (7th argument) must be %d", 2);
if (NA_SHAPE0(rblapack_z) != ldz)
rb_raise(rb_eRuntimeError, "shape 0 of z must be the same as shape 0 of q");
if (NA_SHAPE1(rblapack_z) != n)
rb_raise(rb_eRuntimeError, "shape 1 of z must be the same as shape 1 of a");
if (NA_TYPE(rblapack_z) != NA_SCOMPLEX)
rblapack_z = na_change_type(rblapack_z, NA_SCOMPLEX);
z = NA_PTR_TYPE(rblapack_z, complex*);
ilst = NUM2INT(rblapack_ilst);
wantz = (rblapack_wantz == Qtrue);
ldq = NUM2INT(rblapack_ldq);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (4th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
if (NA_SHAPE1(rblapack_b) != n)
rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of a");
if (NA_TYPE(rblapack_b) != NA_SCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_SCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, complex*);
ifst = NUM2INT(rblapack_ifst);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, complex*);
MEMCPY(a_out__, a, complex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = n;
rblapack_b_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, complex*);
MEMCPY(b_out__, b, complex, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_q_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
q_out__ = NA_PTR_TYPE(rblapack_q_out__, complex*);
MEMCPY(q_out__, q, complex, NA_TOTAL(rblapack_q));
rblapack_q = rblapack_q_out__;
q = q_out__;
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z_out__ = na_make_object(NA_SCOMPLEX, 2, shape, cNArray);
}
z_out__ = NA_PTR_TYPE(rblapack_z_out__, complex*);
MEMCPY(z_out__, z, complex, NA_TOTAL(rblapack_z));
rblapack_z = rblapack_z_out__;
z = z_out__;
ctgexc_(&wantq, &wantz, &n, a, &lda, b, &ldb, q, &ldq, z, &ldz, &ifst, &ilst, &info);
rblapack_info = INT2NUM(info);
rblapack_ilst = INT2NUM(ilst);
return rb_ary_new3(6, rblapack_info, rblapack_a, rblapack_b, rblapack_q, rblapack_z, rblapack_ilst);
}
void
init_lapack_ctgexc(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "ctgexc", rblapack_ctgexc, -1);
}
|