1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
#include "rb_lapack.h"
extern VOID dhgeqz_(char* job, char* compq, char* compz, integer* n, integer* ilo, integer* ihi, doublereal* h, integer* ldh, doublereal* t, integer* ldt, doublereal* alphar, doublereal* alphai, doublereal* beta, doublereal* q, integer* ldq, doublereal* z, integer* ldz, doublereal* work, integer* lwork, integer* info);
static VALUE
rblapack_dhgeqz(int argc, VALUE *argv, VALUE self){
VALUE rblapack_job;
char job;
VALUE rblapack_compq;
char compq;
VALUE rblapack_compz;
char compz;
VALUE rblapack_ilo;
integer ilo;
VALUE rblapack_ihi;
integer ihi;
VALUE rblapack_h;
doublereal *h;
VALUE rblapack_t;
doublereal *t;
VALUE rblapack_q;
doublereal *q;
VALUE rblapack_z;
doublereal *z;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_alphar;
doublereal *alphar;
VALUE rblapack_alphai;
doublereal *alphai;
VALUE rblapack_beta;
doublereal *beta;
VALUE rblapack_work;
doublereal *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_h_out__;
doublereal *h_out__;
VALUE rblapack_t_out__;
doublereal *t_out__;
VALUE rblapack_q_out__;
doublereal *q_out__;
VALUE rblapack_z_out__;
doublereal *z_out__;
integer ldh;
integer n;
integer ldt;
integer ldq;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n alphar, alphai, beta, work, info, h, t, q, z = NumRu::Lapack.dhgeqz( job, compq, compz, ilo, ihi, h, t, q, z, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT, ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* DHGEQZ computes the eigenvalues of a real matrix pair (H,T),\n* where H is an upper Hessenberg matrix and T is upper triangular,\n* using the double-shift QZ method.\n* Matrix pairs of this type are produced by the reduction to\n* generalized upper Hessenberg form of a real matrix pair (A,B):\n*\n* A = Q1*H*Z1**T, B = Q1*T*Z1**T,\n*\n* as computed by DGGHRD.\n*\n* If JOB='S', then the Hessenberg-triangular pair (H,T) is\n* also reduced to generalized Schur form,\n* \n* H = Q*S*Z**T, T = Q*P*Z**T,\n* \n* where Q and Z are orthogonal matrices, P is an upper triangular\n* matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2\n* diagonal blocks.\n*\n* The 1-by-1 blocks correspond to real eigenvalues of the matrix pair\n* (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of\n* eigenvalues.\n*\n* Additionally, the 2-by-2 upper triangular diagonal blocks of P\n* corresponding to 2-by-2 blocks of S are reduced to positive diagonal\n* form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,\n* P(j,j) > 0, and P(j+1,j+1) > 0.\n*\n* Optionally, the orthogonal matrix Q from the generalized Schur\n* factorization may be postmultiplied into an input matrix Q1, and the\n* orthogonal matrix Z may be postmultiplied into an input matrix Z1.\n* If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced\n* the matrix pair (A,B) to generalized upper Hessenberg form, then the\n* output matrices Q1*Q and Z1*Z are the orthogonal factors from the\n* generalized Schur factorization of (A,B):\n*\n* A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T.\n* \n* To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,\n* of (A,B)) are computed as a pair of values (alpha,beta), where alpha is\n* complex and beta real.\n* If beta is nonzero, lambda = alpha / beta is an eigenvalue of the\n* generalized nonsymmetric eigenvalue problem (GNEP)\n* A*x = lambda*B*x\n* and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the\n* alternate form of the GNEP\n* mu*A*y = B*y.\n* Real eigenvalues can be read directly from the generalized Schur\n* form: \n* alpha = S(i,i), beta = P(i,i).\n*\n* Ref: C.B. Moler & G.W. Stewart, \"An Algorithm for Generalized Matrix\n* Eigenvalue Problems\", SIAM J. Numer. Anal., 10(1973),\n* pp. 241--256.\n*\n\n* Arguments\n* =========\n*\n* JOB (input) CHARACTER*1\n* = 'E': Compute eigenvalues only;\n* = 'S': Compute eigenvalues and the Schur form. \n*\n* COMPQ (input) CHARACTER*1\n* = 'N': Left Schur vectors (Q) are not computed;\n* = 'I': Q is initialized to the unit matrix and the matrix Q\n* of left Schur vectors of (H,T) is returned;\n* = 'V': Q must contain an orthogonal matrix Q1 on entry and\n* the product Q1*Q is returned.\n*\n* COMPZ (input) CHARACTER*1\n* = 'N': Right Schur vectors (Z) are not computed;\n* = 'I': Z is initialized to the unit matrix and the matrix Z\n* of right Schur vectors of (H,T) is returned;\n* = 'V': Z must contain an orthogonal matrix Z1 on entry and\n* the product Z1*Z is returned.\n*\n* N (input) INTEGER\n* The order of the matrices H, T, Q, and Z. N >= 0.\n*\n* ILO (input) INTEGER\n* IHI (input) INTEGER\n* ILO and IHI mark the rows and columns of H which are in\n* Hessenberg form. It is assumed that A is already upper\n* triangular in rows and columns 1:ILO-1 and IHI+1:N.\n* If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.\n*\n* H (input/output) DOUBLE PRECISION array, dimension (LDH, N)\n* On entry, the N-by-N upper Hessenberg matrix H.\n* On exit, if JOB = 'S', H contains the upper quasi-triangular\n* matrix S from the generalized Schur factorization;\n* 2-by-2 diagonal blocks (corresponding to complex conjugate\n* pairs of eigenvalues) are returned in standard form, with\n* H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0.\n* If JOB = 'E', the diagonal blocks of H match those of S, but\n* the rest of H is unspecified.\n*\n* LDH (input) INTEGER\n* The leading dimension of the array H. LDH >= max( 1, N ).\n*\n* T (input/output) DOUBLE PRECISION array, dimension (LDT, N)\n* On entry, the N-by-N upper triangular matrix T.\n* On exit, if JOB = 'S', T contains the upper triangular\n* matrix P from the generalized Schur factorization;\n* 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S\n* are reduced to positive diagonal form, i.e., if H(j+1,j) is\n* non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and\n* T(j+1,j+1) > 0.\n* If JOB = 'E', the diagonal blocks of T match those of P, but\n* the rest of T is unspecified.\n*\n* LDT (input) INTEGER\n* The leading dimension of the array T. LDT >= max( 1, N ).\n*\n* ALPHAR (output) DOUBLE PRECISION array, dimension (N)\n* The real parts of each scalar alpha defining an eigenvalue\n* of GNEP.\n*\n* ALPHAI (output) DOUBLE PRECISION array, dimension (N)\n* The imaginary parts of each scalar alpha defining an\n* eigenvalue of GNEP.\n* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if\n* positive, then the j-th and (j+1)-st eigenvalues are a\n* complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).\n*\n* BETA (output) DOUBLE PRECISION array, dimension (N)\n* The scalars beta that define the eigenvalues of GNEP.\n* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and\n* beta = BETA(j) represent the j-th eigenvalue of the matrix\n* pair (A,B), in one of the forms lambda = alpha/beta or\n* mu = beta/alpha. Since either lambda or mu may overflow,\n* they should not, in general, be computed.\n*\n* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)\n* On entry, if COMPZ = 'V', the orthogonal matrix Q1 used in\n* the reduction of (A,B) to generalized Hessenberg form.\n* On exit, if COMPZ = 'I', the orthogonal matrix of left Schur\n* vectors of (H,T), and if COMPZ = 'V', the orthogonal matrix\n* of left Schur vectors of (A,B).\n* Not referenced if COMPZ = 'N'.\n*\n* LDQ (input) INTEGER\n* The leading dimension of the array Q. LDQ >= 1.\n* If COMPQ='V' or 'I', then LDQ >= N.\n*\n* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)\n* On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in\n* the reduction of (A,B) to generalized Hessenberg form.\n* On exit, if COMPZ = 'I', the orthogonal matrix of\n* right Schur vectors of (H,T), and if COMPZ = 'V', the\n* orthogonal matrix of right Schur vectors of (A,B).\n* Not referenced if COMPZ = 'N'.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1.\n* If COMPZ='V' or 'I', then LDZ >= N.\n*\n* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n* On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= max(1,N).\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* = 1,...,N: the QZ iteration did not converge. (H,T) is not\n* in Schur form, but ALPHAR(i), ALPHAI(i), and\n* BETA(i), i=INFO+1,...,N should be correct.\n* = N+1,...,2*N: the shift calculation failed. (H,T) is not\n* in Schur form, but ALPHAR(i), ALPHAI(i), and\n* BETA(i), i=INFO-N+1,...,N should be correct.\n*\n\n* Further Details\n* ===============\n*\n* Iteration counters:\n*\n* JITER -- counts iterations.\n* IITER -- counts iterations run since ILAST was last\n* changed. This is therefore reset only when a 1-by-1 or\n* 2-by-2 block deflates off the bottom.\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n alphar, alphai, beta, work, info, h, t, q, z = NumRu::Lapack.dhgeqz( job, compq, compz, ilo, ihi, h, t, q, z, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 9 && argc != 10)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
rblapack_job = argv[0];
rblapack_compq = argv[1];
rblapack_compz = argv[2];
rblapack_ilo = argv[3];
rblapack_ihi = argv[4];
rblapack_h = argv[5];
rblapack_t = argv[6];
rblapack_q = argv[7];
rblapack_z = argv[8];
if (argc == 10) {
rblapack_lwork = argv[9];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
job = StringValueCStr(rblapack_job)[0];
compz = StringValueCStr(rblapack_compz)[0];
ihi = NUM2INT(rblapack_ihi);
if (!NA_IsNArray(rblapack_t))
rb_raise(rb_eArgError, "t (7th argument) must be NArray");
if (NA_RANK(rblapack_t) != 2)
rb_raise(rb_eArgError, "rank of t (7th argument) must be %d", 2);
ldt = NA_SHAPE0(rblapack_t);
n = NA_SHAPE1(rblapack_t);
if (NA_TYPE(rblapack_t) != NA_DFLOAT)
rblapack_t = na_change_type(rblapack_t, NA_DFLOAT);
t = NA_PTR_TYPE(rblapack_t, doublereal*);
if (!NA_IsNArray(rblapack_z))
rb_raise(rb_eArgError, "z (9th argument) must be NArray");
if (NA_RANK(rblapack_z) != 2)
rb_raise(rb_eArgError, "rank of z (9th argument) must be %d", 2);
ldz = NA_SHAPE0(rblapack_z);
if (NA_SHAPE1(rblapack_z) != n)
rb_raise(rb_eRuntimeError, "shape 1 of z must be the same as shape 1 of t");
if (NA_TYPE(rblapack_z) != NA_DFLOAT)
rblapack_z = na_change_type(rblapack_z, NA_DFLOAT);
z = NA_PTR_TYPE(rblapack_z, doublereal*);
compq = StringValueCStr(rblapack_compq)[0];
if (!NA_IsNArray(rblapack_h))
rb_raise(rb_eArgError, "h (6th argument) must be NArray");
if (NA_RANK(rblapack_h) != 2)
rb_raise(rb_eArgError, "rank of h (6th argument) must be %d", 2);
ldh = NA_SHAPE0(rblapack_h);
if (NA_SHAPE1(rblapack_h) != n)
rb_raise(rb_eRuntimeError, "shape 1 of h must be the same as shape 1 of t");
if (NA_TYPE(rblapack_h) != NA_DFLOAT)
rblapack_h = na_change_type(rblapack_h, NA_DFLOAT);
h = NA_PTR_TYPE(rblapack_h, doublereal*);
ilo = NUM2INT(rblapack_ilo);
if (!NA_IsNArray(rblapack_q))
rb_raise(rb_eArgError, "q (8th argument) must be NArray");
if (NA_RANK(rblapack_q) != 2)
rb_raise(rb_eArgError, "rank of q (8th argument) must be %d", 2);
ldq = NA_SHAPE0(rblapack_q);
if (NA_SHAPE1(rblapack_q) != n)
rb_raise(rb_eRuntimeError, "shape 1 of q must be the same as shape 1 of t");
if (NA_TYPE(rblapack_q) != NA_DFLOAT)
rblapack_q = na_change_type(rblapack_q, NA_DFLOAT);
q = NA_PTR_TYPE(rblapack_q, doublereal*);
if (rblapack_lwork == Qnil)
lwork = n;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = n;
rblapack_alphar = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
alphar = NA_PTR_TYPE(rblapack_alphar, doublereal*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_alphai = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
alphai = NA_PTR_TYPE(rblapack_alphai, doublereal*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_beta = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
beta = NA_PTR_TYPE(rblapack_beta, doublereal*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldh;
shape[1] = n;
rblapack_h_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
h_out__ = NA_PTR_TYPE(rblapack_h_out__, doublereal*);
MEMCPY(h_out__, h, doublereal, NA_TOTAL(rblapack_h));
rblapack_h = rblapack_h_out__;
h = h_out__;
{
na_shape_t shape[2];
shape[0] = ldt;
shape[1] = n;
rblapack_t_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
t_out__ = NA_PTR_TYPE(rblapack_t_out__, doublereal*);
MEMCPY(t_out__, t, doublereal, NA_TOTAL(rblapack_t));
rblapack_t = rblapack_t_out__;
t = t_out__;
{
na_shape_t shape[2];
shape[0] = ldq;
shape[1] = n;
rblapack_q_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
q_out__ = NA_PTR_TYPE(rblapack_q_out__, doublereal*);
MEMCPY(q_out__, q, doublereal, NA_TOTAL(rblapack_q));
rblapack_q = rblapack_q_out__;
q = q_out__;
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
z_out__ = NA_PTR_TYPE(rblapack_z_out__, doublereal*);
MEMCPY(z_out__, z, doublereal, NA_TOTAL(rblapack_z));
rblapack_z = rblapack_z_out__;
z = z_out__;
dhgeqz_(&job, &compq, &compz, &n, &ilo, &ihi, h, &ldh, t, &ldt, alphar, alphai, beta, q, &ldq, z, &ldz, work, &lwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(9, rblapack_alphar, rblapack_alphai, rblapack_beta, rblapack_work, rblapack_info, rblapack_h, rblapack_t, rblapack_q, rblapack_z);
}
void
init_lapack_dhgeqz(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dhgeqz", rblapack_dhgeqz, -1);
}
|