1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
#include "rb_lapack.h"
extern doublereal dla_syrcond_(char* uplo, integer* n, doublereal* a, integer* lda, doublereal* af, integer* ldaf, integer* ipiv, integer* cmode, doublereal* c, integer* info, doublereal* work, integer* iwork);
static VALUE
rblapack_dla_syrcond(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
doublereal *a;
VALUE rblapack_af;
doublereal *af;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_cmode;
integer cmode;
VALUE rblapack_c;
doublereal *c;
VALUE rblapack_work;
doublereal *work;
VALUE rblapack_iwork;
integer *iwork;
VALUE rblapack_info;
integer info;
VALUE rblapack___out__;
doublereal __out__;
integer lda;
integer n;
integer ldaf;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, __out__ = NumRu::Lapack.dla_syrcond( uplo, a, af, ipiv, cmode, c, work, iwork, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n DOUBLE PRECISION FUNCTION DLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV, CMODE, C, INFO, WORK, IWORK )\n\n* Purpose\n* =======\n*\n* DLA_SYRCOND estimates the Skeel condition number of op(A) * op2(C)\n* where op2 is determined by CMODE as follows\n* CMODE = 1 op2(C) = C\n* CMODE = 0 op2(C) = I\n* CMODE = -1 op2(C) = inv(C)\n* The Skeel condition number cond(A) = norminf( |inv(A)||A| )\n* is computed by computing scaling factors R such that\n* diag(R)*A*op2(C) is row equilibrated and computing the standard\n* infinity-norm condition number.\n*\n\n* Arguments\n* ==========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The number of linear equations, i.e., the order of the\n* matrix A. N >= 0.\n*\n* A (input) DOUBLE PRECISION array, dimension (LDA,N)\n* On entry, the N-by-N matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* AF (input) DOUBLE PRECISION array, dimension (LDAF,N)\n* The block diagonal matrix D and the multipliers used to\n* obtain the factor U or L as computed by DSYTRF.\n*\n* LDAF (input) INTEGER\n* The leading dimension of the array AF. LDAF >= max(1,N).\n*\n* IPIV (input) INTEGER array, dimension (N)\n* Details of the interchanges and the block structure of D\n* as determined by DSYTRF.\n*\n* CMODE (input) INTEGER\n* Determines op2(C) in the formula op(A) * op2(C) as follows:\n* CMODE = 1 op2(C) = C\n* CMODE = 0 op2(C) = I\n* CMODE = -1 op2(C) = inv(C)\n*\n* C (input) DOUBLE PRECISION array, dimension (N)\n* The vector C in the formula op(A) * op2(C).\n*\n* INFO (output) INTEGER\n* = 0: Successful exit.\n* i > 0: The ith argument is invalid.\n*\n* WORK (input) DOUBLE PRECISION array, dimension (3*N).\n* Workspace.\n*\n* IWORK (input) INTEGER array, dimension (N).\n* Workspace.\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n CHARACTER NORMIN\n INTEGER KASE, I, J\n DOUBLE PRECISION AINVNM, SMLNUM, TMP\n LOGICAL UP\n* ..\n* .. Local Arrays ..\n INTEGER ISAVE( 3 )\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n INTEGER IDAMAX\n DOUBLE PRECISION DLAMCH\n EXTERNAL LSAME, IDAMAX, DLAMCH\n* ..\n* .. External Subroutines ..\n EXTERNAL DLACN2, DLATRS, DRSCL, XERBLA, DSYTRS\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC ABS, MAX\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, __out__ = NumRu::Lapack.dla_syrcond( uplo, a, af, ipiv, cmode, c, work, iwork, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 8 && argc != 8)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
rblapack_uplo = argv[0];
rblapack_a = argv[1];
rblapack_af = argv[2];
rblapack_ipiv = argv[3];
rblapack_cmode = argv[4];
rblapack_c = argv[5];
rblapack_work = argv[6];
rblapack_iwork = argv[7];
if (argc == 8) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_af))
rb_raise(rb_eArgError, "af (3th argument) must be NArray");
if (NA_RANK(rblapack_af) != 2)
rb_raise(rb_eArgError, "rank of af (3th argument) must be %d", 2);
ldaf = NA_SHAPE0(rblapack_af);
n = NA_SHAPE1(rblapack_af);
if (NA_TYPE(rblapack_af) != NA_DFLOAT)
rblapack_af = na_change_type(rblapack_af, NA_DFLOAT);
af = NA_PTR_TYPE(rblapack_af, doublereal*);
cmode = NUM2INT(rblapack_cmode);
if (!NA_IsNArray(rblapack_iwork))
rb_raise(rb_eArgError, "iwork (8th argument) must be NArray");
if (NA_RANK(rblapack_iwork) != 1)
rb_raise(rb_eArgError, "rank of iwork (8th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_iwork) != n)
rb_raise(rb_eRuntimeError, "shape 0 of iwork must be the same as shape 1 of af");
if (NA_TYPE(rblapack_iwork) != NA_LINT)
rblapack_iwork = na_change_type(rblapack_iwork, NA_LINT);
iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != n)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of af");
if (NA_TYPE(rblapack_a) != NA_DFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
a = NA_PTR_TYPE(rblapack_a, doublereal*);
if (!NA_IsNArray(rblapack_c))
rb_raise(rb_eArgError, "c (6th argument) must be NArray");
if (NA_RANK(rblapack_c) != 1)
rb_raise(rb_eArgError, "rank of c (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_c) != n)
rb_raise(rb_eRuntimeError, "shape 0 of c must be the same as shape 1 of af");
if (NA_TYPE(rblapack_c) != NA_DFLOAT)
rblapack_c = na_change_type(rblapack_c, NA_DFLOAT);
c = NA_PTR_TYPE(rblapack_c, doublereal*);
if (!NA_IsNArray(rblapack_ipiv))
rb_raise(rb_eArgError, "ipiv (4th argument) must be NArray");
if (NA_RANK(rblapack_ipiv) != 1)
rb_raise(rb_eArgError, "rank of ipiv (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_ipiv) != n)
rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 1 of af");
if (NA_TYPE(rblapack_ipiv) != NA_LINT)
rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
if (!NA_IsNArray(rblapack_work))
rb_raise(rb_eArgError, "work (7th argument) must be NArray");
if (NA_RANK(rblapack_work) != 1)
rb_raise(rb_eArgError, "rank of work (7th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_work) != (3*n))
rb_raise(rb_eRuntimeError, "shape 0 of work must be %d", 3*n);
if (NA_TYPE(rblapack_work) != NA_DFLOAT)
rblapack_work = na_change_type(rblapack_work, NA_DFLOAT);
work = NA_PTR_TYPE(rblapack_work, doublereal*);
__out__ = dla_syrcond_(&uplo, &n, a, &lda, af, &ldaf, ipiv, &cmode, c, &info, work, iwork);
rblapack_info = INT2NUM(info);
rblapack___out__ = rb_float_new((double)__out__);
return rb_ary_new3(2, rblapack_info, rblapack___out__);
}
void
init_lapack_dla_syrcond(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dla_syrcond", rblapack_dla_syrcond, -1);
}
|