File: dlag2.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (91 lines) | stat: -rw-r--r-- 6,860 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#include "rb_lapack.h"

extern VOID dlag2_(doublereal* a, integer* lda, doublereal* b, integer* ldb, doublereal* safmin, doublereal* scale1, doublereal* scale2, doublereal* wr1, doublereal* wr2, doublereal* wi);


static VALUE
rblapack_dlag2(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_a;
  doublereal *a; 
  VALUE rblapack_b;
  doublereal *b; 
  VALUE rblapack_safmin;
  doublereal safmin; 
  VALUE rblapack_scale1;
  doublereal scale1; 
  VALUE rblapack_scale2;
  doublereal scale2; 
  VALUE rblapack_wr1;
  doublereal wr1; 
  VALUE rblapack_wr2;
  doublereal wr2; 
  VALUE rblapack_wi;
  doublereal wi; 

  integer lda;
  integer ldb;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  scale1, scale2, wr1, wr2, wi = NumRu::Lapack.dlag2( a, b, safmin, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2, WI )\n\n*  Purpose\n*  =======\n*\n*  DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue\n*  problem  A - w B, with scaling as necessary to avoid over-/underflow.\n*\n*  The scaling factor \"s\" results in a modified eigenvalue equation\n*\n*      s A - w B\n*\n*  where  s  is a non-negative scaling factor chosen so that  w,  w B,\n*  and  s A  do not overflow and, if possible, do not underflow, either.\n*\n\n*  Arguments\n*  =========\n*\n*  A       (input) DOUBLE PRECISION array, dimension (LDA, 2)\n*          On entry, the 2 x 2 matrix A.  It is assumed that its 1-norm\n*          is less than 1/SAFMIN.  Entries less than\n*          sqrt(SAFMIN)*norm(A) are subject to being treated as zero.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= 2.\n*\n*  B       (input) DOUBLE PRECISION array, dimension (LDB, 2)\n*          On entry, the 2 x 2 upper triangular matrix B.  It is\n*          assumed that the one-norm of B is less than 1/SAFMIN.  The\n*          diagonals should be at least sqrt(SAFMIN) times the largest\n*          element of B (in absolute value); if a diagonal is smaller\n*          than that, then  +/- sqrt(SAFMIN) will be used instead of\n*          that diagonal.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= 2.\n*\n*  SAFMIN  (input) DOUBLE PRECISION\n*          The smallest positive number s.t. 1/SAFMIN does not\n*          overflow.  (This should always be DLAMCH('S') -- it is an\n*          argument in order to avoid having to call DLAMCH frequently.)\n*\n*  SCALE1  (output) DOUBLE PRECISION\n*          A scaling factor used to avoid over-/underflow in the\n*          eigenvalue equation which defines the first eigenvalue.  If\n*          the eigenvalues are complex, then the eigenvalues are\n*          ( WR1  +/-  WI i ) / SCALE1  (which may lie outside the\n*          exponent range of the machine), SCALE1=SCALE2, and SCALE1\n*          will always be positive.  If the eigenvalues are real, then\n*          the first (real) eigenvalue is  WR1 / SCALE1 , but this may\n*          overflow or underflow, and in fact, SCALE1 may be zero or\n*          less than the underflow threshold if the exact eigenvalue\n*          is sufficiently large.\n*\n*  SCALE2  (output) DOUBLE PRECISION\n*          A scaling factor used to avoid over-/underflow in the\n*          eigenvalue equation which defines the second eigenvalue.  If\n*          the eigenvalues are complex, then SCALE2=SCALE1.  If the\n*          eigenvalues are real, then the second (real) eigenvalue is\n*          WR2 / SCALE2 , but this may overflow or underflow, and in\n*          fact, SCALE2 may be zero or less than the underflow\n*          threshold if the exact eigenvalue is sufficiently large.\n*\n*  WR1     (output) DOUBLE PRECISION\n*          If the eigenvalue is real, then WR1 is SCALE1 times the\n*          eigenvalue closest to the (2,2) element of A B**(-1).  If the\n*          eigenvalue is complex, then WR1=WR2 is SCALE1 times the real\n*          part of the eigenvalues.\n*\n*  WR2     (output) DOUBLE PRECISION\n*          If the eigenvalue is real, then WR2 is SCALE2 times the\n*          other eigenvalue.  If the eigenvalue is complex, then\n*          WR1=WR2 is SCALE1 times the real part of the eigenvalues.\n*\n*  WI      (output) DOUBLE PRECISION\n*          If the eigenvalue is real, then WI is zero.  If the\n*          eigenvalue is complex, then WI is SCALE1 times the imaginary\n*          part of the eigenvalues.  WI will always be non-negative.\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  scale1, scale2, wr1, wr2, wi = NumRu::Lapack.dlag2( a, b, safmin, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 3)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_a = argv[0];
  rblapack_b = argv[1];
  rblapack_safmin = argv[2];
  if (argc == 3) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (1th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  if (NA_SHAPE1(rblapack_a) != (2))
    rb_raise(rb_eRuntimeError, "shape 1 of a must be %d", 2);
  if (NA_TYPE(rblapack_a) != NA_DFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
  a = NA_PTR_TYPE(rblapack_a, doublereal*);
  safmin = NUM2DBL(rblapack_safmin);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (2th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (2th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != (2))
    rb_raise(rb_eRuntimeError, "shape 1 of b must be %d", 2);
  if (NA_TYPE(rblapack_b) != NA_DFLOAT)
    rblapack_b = na_change_type(rblapack_b, NA_DFLOAT);
  b = NA_PTR_TYPE(rblapack_b, doublereal*);

  dlag2_(a, &lda, b, &ldb, &safmin, &scale1, &scale2, &wr1, &wr2, &wi);

  rblapack_scale1 = rb_float_new((double)scale1);
  rblapack_scale2 = rb_float_new((double)scale2);
  rblapack_wr1 = rb_float_new((double)wr1);
  rblapack_wr2 = rb_float_new((double)wr2);
  rblapack_wi = rb_float_new((double)wi);
  return rb_ary_new3(5, rblapack_scale1, rblapack_scale2, rblapack_wr1, rblapack_wr2, rblapack_wi);
}

void
init_lapack_dlag2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dlag2", rblapack_dlag2, -1);
}