File: dlagv2.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (132 lines) | stat: -rw-r--r-- 7,001 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include "rb_lapack.h"

extern VOID dlagv2_(doublereal* a, integer* lda, doublereal* b, integer* ldb, doublereal* alphar, doublereal* alphai, doublereal* beta, doublereal* csl, doublereal* snl, doublereal* csr, doublereal* snr);


static VALUE
rblapack_dlagv2(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_a;
  doublereal *a; 
  VALUE rblapack_b;
  doublereal *b; 
  VALUE rblapack_alphar;
  doublereal *alphar; 
  VALUE rblapack_alphai;
  doublereal *alphai; 
  VALUE rblapack_beta;
  doublereal *beta; 
  VALUE rblapack_csl;
  doublereal csl; 
  VALUE rblapack_snl;
  doublereal snl; 
  VALUE rblapack_csr;
  doublereal csr; 
  VALUE rblapack_snr;
  doublereal snr; 
  VALUE rblapack_a_out__;
  doublereal *a_out__;
  VALUE rblapack_b_out__;
  doublereal *b_out__;

  integer lda;
  integer ldb;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  alphar, alphai, beta, csl, snl, csr, snr, a, b = NumRu::Lapack.dlagv2( a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR, SNR )\n\n*  Purpose\n*  =======\n*\n*  DLAGV2 computes the Generalized Schur factorization of a real 2-by-2\n*  matrix pencil (A,B) where B is upper triangular. This routine\n*  computes orthogonal (rotation) matrices given by CSL, SNL and CSR,\n*  SNR such that\n*\n*  1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0\n*     types), then\n*\n*     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]\n*     [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]\n*\n*     [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]\n*     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ],\n*\n*  2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,\n*     then\n*\n*     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]\n*     [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]\n*\n*     [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]\n*     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ]\n*\n*     where b11 >= b22 > 0.\n*\n*\n\n*  Arguments\n*  =========\n*\n*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, 2)\n*          On entry, the 2 x 2 matrix A.\n*          On exit, A is overwritten by the ``A-part'' of the\n*          generalized Schur form.\n*\n*  LDA     (input) INTEGER\n*          THe leading dimension of the array A.  LDA >= 2.\n*\n*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, 2)\n*          On entry, the upper triangular 2 x 2 matrix B.\n*          On exit, B is overwritten by the ``B-part'' of the\n*          generalized Schur form.\n*\n*  LDB     (input) INTEGER\n*          THe leading dimension of the array B.  LDB >= 2.\n*\n*  ALPHAR  (output) DOUBLE PRECISION array, dimension (2)\n*  ALPHAI  (output) DOUBLE PRECISION array, dimension (2)\n*  BETA    (output) DOUBLE PRECISION array, dimension (2)\n*          (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the\n*          pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may\n*          be zero.\n*\n*  CSL     (output) DOUBLE PRECISION\n*          The cosine of the left rotation matrix.\n*\n*  SNL     (output) DOUBLE PRECISION\n*          The sine of the left rotation matrix.\n*\n*  CSR     (output) DOUBLE PRECISION\n*          The cosine of the right rotation matrix.\n*\n*  SNR     (output) DOUBLE PRECISION\n*          The sine of the right rotation matrix.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  alphar, alphai, beta, csl, snl, csr, snr, a, b = NumRu::Lapack.dlagv2( a, b, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 2 && argc != 2)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
  rblapack_a = argv[0];
  rblapack_b = argv[1];
  if (argc == 2) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (1th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  if (NA_SHAPE1(rblapack_a) != (2))
    rb_raise(rb_eRuntimeError, "shape 1 of a must be %d", 2);
  if (NA_TYPE(rblapack_a) != NA_DFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
  a = NA_PTR_TYPE(rblapack_a, doublereal*);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (2th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (2th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != (2))
    rb_raise(rb_eRuntimeError, "shape 1 of b must be %d", 2);
  if (NA_TYPE(rblapack_b) != NA_DFLOAT)
    rblapack_b = na_change_type(rblapack_b, NA_DFLOAT);
  b = NA_PTR_TYPE(rblapack_b, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = 2;
    rblapack_alphar = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  alphar = NA_PTR_TYPE(rblapack_alphar, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = 2;
    rblapack_alphai = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  alphai = NA_PTR_TYPE(rblapack_alphai, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = 2;
    rblapack_beta = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  beta = NA_PTR_TYPE(rblapack_beta, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = 2;
    rblapack_a_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublereal*);
  MEMCPY(a_out__, a, doublereal, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = 2;
    rblapack_b_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublereal*);
  MEMCPY(b_out__, b, doublereal, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;

  dlagv2_(a, &lda, b, &ldb, alphar, alphai, beta, &csl, &snl, &csr, &snr);

  rblapack_csl = rb_float_new((double)csl);
  rblapack_snl = rb_float_new((double)snl);
  rblapack_csr = rb_float_new((double)csr);
  rblapack_snr = rb_float_new((double)snr);
  return rb_ary_new3(9, rblapack_alphar, rblapack_alphai, rblapack_beta, rblapack_csl, rblapack_snl, rblapack_csr, rblapack_snr, rblapack_a, rblapack_b);
}

void
init_lapack_dlagv2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dlagv2", rblapack_dlagv2, -1);
}