1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
#include "rb_lapack.h"
extern VOID dlagv2_(doublereal* a, integer* lda, doublereal* b, integer* ldb, doublereal* alphar, doublereal* alphai, doublereal* beta, doublereal* csl, doublereal* snl, doublereal* csr, doublereal* snr);
static VALUE
rblapack_dlagv2(int argc, VALUE *argv, VALUE self){
VALUE rblapack_a;
doublereal *a;
VALUE rblapack_b;
doublereal *b;
VALUE rblapack_alphar;
doublereal *alphar;
VALUE rblapack_alphai;
doublereal *alphai;
VALUE rblapack_beta;
doublereal *beta;
VALUE rblapack_csl;
doublereal csl;
VALUE rblapack_snl;
doublereal snl;
VALUE rblapack_csr;
doublereal csr;
VALUE rblapack_snr;
doublereal snr;
VALUE rblapack_a_out__;
doublereal *a_out__;
VALUE rblapack_b_out__;
doublereal *b_out__;
integer lda;
integer ldb;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n alphar, alphai, beta, csl, snl, csr, snr, a, b = NumRu::Lapack.dlagv2( a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR, SNR )\n\n* Purpose\n* =======\n*\n* DLAGV2 computes the Generalized Schur factorization of a real 2-by-2\n* matrix pencil (A,B) where B is upper triangular. This routine\n* computes orthogonal (rotation) matrices given by CSL, SNL and CSR,\n* SNR such that\n*\n* 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0\n* types), then\n*\n* [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]\n* [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]\n*\n* [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]\n* [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],\n*\n* 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,\n* then\n*\n* [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]\n* [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]\n*\n* [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]\n* [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]\n*\n* where b11 >= b22 > 0.\n*\n*\n\n* Arguments\n* =========\n*\n* A (input/output) DOUBLE PRECISION array, dimension (LDA, 2)\n* On entry, the 2 x 2 matrix A.\n* On exit, A is overwritten by the ``A-part'' of the\n* generalized Schur form.\n*\n* LDA (input) INTEGER\n* THe leading dimension of the array A. LDA >= 2.\n*\n* B (input/output) DOUBLE PRECISION array, dimension (LDB, 2)\n* On entry, the upper triangular 2 x 2 matrix B.\n* On exit, B is overwritten by the ``B-part'' of the\n* generalized Schur form.\n*\n* LDB (input) INTEGER\n* THe leading dimension of the array B. LDB >= 2.\n*\n* ALPHAR (output) DOUBLE PRECISION array, dimension (2)\n* ALPHAI (output) DOUBLE PRECISION array, dimension (2)\n* BETA (output) DOUBLE PRECISION array, dimension (2)\n* (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the\n* pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may\n* be zero.\n*\n* CSL (output) DOUBLE PRECISION\n* The cosine of the left rotation matrix.\n*\n* SNL (output) DOUBLE PRECISION\n* The sine of the left rotation matrix.\n*\n* CSR (output) DOUBLE PRECISION\n* The cosine of the right rotation matrix.\n*\n* SNR (output) DOUBLE PRECISION\n* The sine of the right rotation matrix.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n alphar, alphai, beta, csl, snl, csr, snr, a, b = NumRu::Lapack.dlagv2( a, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 2 && argc != 2)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
rblapack_a = argv[0];
rblapack_b = argv[1];
if (argc == 2) {
} else if (rblapack_options != Qnil) {
} else {
}
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (1th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != (2))
rb_raise(rb_eRuntimeError, "shape 1 of a must be %d", 2);
if (NA_TYPE(rblapack_a) != NA_DFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
a = NA_PTR_TYPE(rblapack_a, doublereal*);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (2th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (2th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
if (NA_SHAPE1(rblapack_b) != (2))
rb_raise(rb_eRuntimeError, "shape 1 of b must be %d", 2);
if (NA_TYPE(rblapack_b) != NA_DFLOAT)
rblapack_b = na_change_type(rblapack_b, NA_DFLOAT);
b = NA_PTR_TYPE(rblapack_b, doublereal*);
{
na_shape_t shape[1];
shape[0] = 2;
rblapack_alphar = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
alphar = NA_PTR_TYPE(rblapack_alphar, doublereal*);
{
na_shape_t shape[1];
shape[0] = 2;
rblapack_alphai = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
alphai = NA_PTR_TYPE(rblapack_alphai, doublereal*);
{
na_shape_t shape[1];
shape[0] = 2;
rblapack_beta = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
beta = NA_PTR_TYPE(rblapack_beta, doublereal*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = 2;
rblapack_a_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublereal*);
MEMCPY(a_out__, a, doublereal, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = 2;
rblapack_b_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublereal*);
MEMCPY(b_out__, b, doublereal, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
dlagv2_(a, &lda, b, &ldb, alphar, alphai, beta, &csl, &snl, &csr, &snr);
rblapack_csl = rb_float_new((double)csl);
rblapack_snl = rb_float_new((double)snl);
rblapack_csr = rb_float_new((double)csr);
rblapack_snr = rb_float_new((double)snr);
return rb_ary_new3(9, rblapack_alphar, rblapack_alphai, rblapack_beta, rblapack_csl, rblapack_snl, rblapack_csr, rblapack_snr, rblapack_a, rblapack_b);
}
void
init_lapack_dlagv2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dlagv2", rblapack_dlagv2, -1);
}
|