1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
#include "rb_lapack.h"
extern VOID dlasd7_(integer* icompq, integer* nl, integer* nr, integer* sqre, integer* k, doublereal* d, doublereal* z, doublereal* zw, doublereal* vf, doublereal* vfw, doublereal* vl, doublereal* vlw, doublereal* alpha, doublereal* beta, doublereal* dsigma, integer* idx, integer* idxp, integer* idxq, integer* perm, integer* givptr, integer* givcol, integer* ldgcol, doublereal* givnum, integer* ldgnum, doublereal* c, doublereal* s, integer* info);
static VALUE
rblapack_dlasd7(int argc, VALUE *argv, VALUE self){
VALUE rblapack_icompq;
integer icompq;
VALUE rblapack_nl;
integer nl;
VALUE rblapack_nr;
integer nr;
VALUE rblapack_sqre;
integer sqre;
VALUE rblapack_d;
doublereal *d;
VALUE rblapack_vf;
doublereal *vf;
VALUE rblapack_vl;
doublereal *vl;
VALUE rblapack_alpha;
doublereal alpha;
VALUE rblapack_beta;
doublereal beta;
VALUE rblapack_idxq;
integer *idxq;
VALUE rblapack_k;
integer k;
VALUE rblapack_z;
doublereal *z;
VALUE rblapack_dsigma;
doublereal *dsigma;
VALUE rblapack_perm;
integer *perm;
VALUE rblapack_givptr;
integer givptr;
VALUE rblapack_givcol;
integer *givcol;
VALUE rblapack_givnum;
doublereal *givnum;
VALUE rblapack_c;
doublereal c;
VALUE rblapack_s;
doublereal s;
VALUE rblapack_info;
integer info;
VALUE rblapack_d_out__;
doublereal *d_out__;
VALUE rblapack_vf_out__;
doublereal *vf_out__;
VALUE rblapack_vl_out__;
doublereal *vl_out__;
doublereal *zw;
doublereal *vfw;
doublereal *vlw;
integer *idx;
integer *idxp;
integer n;
integer m;
integer ldgcol;
integer ldgnum;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n k, z, dsigma, perm, givptr, givcol, givnum, c, s, info, d, vf, vl = NumRu::Lapack.dlasd7( icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL, VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S, INFO )\n\n* Purpose\n* =======\n*\n* DLASD7 merges the two sets of singular values together into a single\n* sorted set. Then it tries to deflate the size of the problem. There\n* are two ways in which deflation can occur: when two or more singular\n* values are close together or if there is a tiny entry in the Z\n* vector. For each such occurrence the order of the related\n* secular equation problem is reduced by one.\n*\n* DLASD7 is called from DLASD6.\n*\n\n* Arguments\n* =========\n*\n* ICOMPQ (input) INTEGER\n* Specifies whether singular vectors are to be computed\n* in compact form, as follows:\n* = 0: Compute singular values only.\n* = 1: Compute singular vectors of upper\n* bidiagonal matrix in compact form.\n*\n* NL (input) INTEGER\n* The row dimension of the upper block. NL >= 1.\n*\n* NR (input) INTEGER\n* The row dimension of the lower block. NR >= 1.\n*\n* SQRE (input) INTEGER\n* = 0: the lower block is an NR-by-NR square matrix.\n* = 1: the lower block is an NR-by-(NR+1) rectangular matrix.\n*\n* The bidiagonal matrix has\n* N = NL + NR + 1 rows and\n* M = N + SQRE >= N columns.\n*\n* K (output) INTEGER\n* Contains the dimension of the non-deflated matrix, this is\n* the order of the related secular equation. 1 <= K <=N.\n*\n* D (input/output) DOUBLE PRECISION array, dimension ( N )\n* On entry D contains the singular values of the two submatrices\n* to be combined. On exit D contains the trailing (N-K) updated\n* singular values (those which were deflated) sorted into\n* increasing order.\n*\n* Z (output) DOUBLE PRECISION array, dimension ( M )\n* On exit Z contains the updating row vector in the secular\n* equation.\n*\n* ZW (workspace) DOUBLE PRECISION array, dimension ( M )\n* Workspace for Z.\n*\n* VF (input/output) DOUBLE PRECISION array, dimension ( M )\n* On entry, VF(1:NL+1) contains the first components of all\n* right singular vectors of the upper block; and VF(NL+2:M)\n* contains the first components of all right singular vectors\n* of the lower block. On exit, VF contains the first components\n* of all right singular vectors of the bidiagonal matrix.\n*\n* VFW (workspace) DOUBLE PRECISION array, dimension ( M )\n* Workspace for VF.\n*\n* VL (input/output) DOUBLE PRECISION array, dimension ( M )\n* On entry, VL(1:NL+1) contains the last components of all\n* right singular vectors of the upper block; and VL(NL+2:M)\n* contains the last components of all right singular vectors\n* of the lower block. On exit, VL contains the last components\n* of all right singular vectors of the bidiagonal matrix.\n*\n* VLW (workspace) DOUBLE PRECISION array, dimension ( M )\n* Workspace for VL.\n*\n* ALPHA (input) DOUBLE PRECISION\n* Contains the diagonal element associated with the added row.\n*\n* BETA (input) DOUBLE PRECISION\n* Contains the off-diagonal element associated with the added\n* row.\n*\n* DSIGMA (output) DOUBLE PRECISION array, dimension ( N )\n* Contains a copy of the diagonal elements (K-1 singular values\n* and one zero) in the secular equation.\n*\n* IDX (workspace) INTEGER array, dimension ( N )\n* This will contain the permutation used to sort the contents of\n* D into ascending order.\n*\n* IDXP (workspace) INTEGER array, dimension ( N )\n* This will contain the permutation used to place deflated\n* values of D at the end of the array. On output IDXP(2:K)\n* points to the nondeflated D-values and IDXP(K+1:N)\n* points to the deflated singular values.\n*\n* IDXQ (input) INTEGER array, dimension ( N )\n* This contains the permutation which separately sorts the two\n* sub-problems in D into ascending order. Note that entries in\n* the first half of this permutation must first be moved one\n* position backward; and entries in the second half\n* must first have NL+1 added to their values.\n*\n* PERM (output) INTEGER array, dimension ( N )\n* The permutations (from deflation and sorting) to be applied\n* to each singular block. Not referenced if ICOMPQ = 0.\n*\n* GIVPTR (output) INTEGER\n* The number of Givens rotations which took place in this\n* subproblem. Not referenced if ICOMPQ = 0.\n*\n* GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )\n* Each pair of numbers indicates a pair of columns to take place\n* in a Givens rotation. Not referenced if ICOMPQ = 0.\n*\n* LDGCOL (input) INTEGER\n* The leading dimension of GIVCOL, must be at least N.\n*\n* GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )\n* Each number indicates the C or S value to be used in the\n* corresponding Givens rotation. Not referenced if ICOMPQ = 0.\n*\n* LDGNUM (input) INTEGER\n* The leading dimension of GIVNUM, must be at least N.\n*\n* C (output) DOUBLE PRECISION\n* C contains garbage if SQRE =0 and the C-value of a Givens\n* rotation related to the right null space if SQRE = 1.\n*\n* S (output) DOUBLE PRECISION\n* S contains garbage if SQRE =0 and the S-value of a Givens\n* rotation related to the right null space if SQRE = 1.\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Ming Gu and Huan Ren, Computer Science Division, University of\n* California at Berkeley, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n k, z, dsigma, perm, givptr, givcol, givnum, c, s, info, d, vf, vl = NumRu::Lapack.dlasd7( icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 10 && argc != 10)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 10)", argc);
rblapack_icompq = argv[0];
rblapack_nl = argv[1];
rblapack_nr = argv[2];
rblapack_sqre = argv[3];
rblapack_d = argv[4];
rblapack_vf = argv[5];
rblapack_vl = argv[6];
rblapack_alpha = argv[7];
rblapack_beta = argv[8];
rblapack_idxq = argv[9];
if (argc == 10) {
} else if (rblapack_options != Qnil) {
} else {
}
icompq = NUM2INT(rblapack_icompq);
nr = NUM2INT(rblapack_nr);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (5th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (5th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_d);
if (NA_TYPE(rblapack_d) != NA_DFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
d = NA_PTR_TYPE(rblapack_d, doublereal*);
if (!NA_IsNArray(rblapack_vl))
rb_raise(rb_eArgError, "vl (7th argument) must be NArray");
if (NA_RANK(rblapack_vl) != 1)
rb_raise(rb_eArgError, "rank of vl (7th argument) must be %d", 1);
m = NA_SHAPE0(rblapack_vl);
if (NA_TYPE(rblapack_vl) != NA_DFLOAT)
rblapack_vl = na_change_type(rblapack_vl, NA_DFLOAT);
vl = NA_PTR_TYPE(rblapack_vl, doublereal*);
beta = NUM2DBL(rblapack_beta);
nl = NUM2INT(rblapack_nl);
if (!NA_IsNArray(rblapack_vf))
rb_raise(rb_eArgError, "vf (6th argument) must be NArray");
if (NA_RANK(rblapack_vf) != 1)
rb_raise(rb_eArgError, "rank of vf (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_vf) != m)
rb_raise(rb_eRuntimeError, "shape 0 of vf must be the same as shape 0 of vl");
if (NA_TYPE(rblapack_vf) != NA_DFLOAT)
rblapack_vf = na_change_type(rblapack_vf, NA_DFLOAT);
vf = NA_PTR_TYPE(rblapack_vf, doublereal*);
if (!NA_IsNArray(rblapack_idxq))
rb_raise(rb_eArgError, "idxq (10th argument) must be NArray");
if (NA_RANK(rblapack_idxq) != 1)
rb_raise(rb_eArgError, "rank of idxq (10th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_idxq) != n)
rb_raise(rb_eRuntimeError, "shape 0 of idxq must be the same as shape 0 of d");
if (NA_TYPE(rblapack_idxq) != NA_LINT)
rblapack_idxq = na_change_type(rblapack_idxq, NA_LINT);
idxq = NA_PTR_TYPE(rblapack_idxq, integer*);
ldgcol = n;
sqre = NUM2INT(rblapack_sqre);
ldgnum = n;
alpha = NUM2DBL(rblapack_alpha);
{
na_shape_t shape[1];
shape[0] = m;
rblapack_z = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, doublereal*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_dsigma = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
dsigma = NA_PTR_TYPE(rblapack_dsigma, doublereal*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_perm = na_make_object(NA_LINT, 1, shape, cNArray);
}
perm = NA_PTR_TYPE(rblapack_perm, integer*);
{
na_shape_t shape[2];
shape[0] = ldgcol;
shape[1] = 2;
rblapack_givcol = na_make_object(NA_LINT, 2, shape, cNArray);
}
givcol = NA_PTR_TYPE(rblapack_givcol, integer*);
{
na_shape_t shape[2];
shape[0] = ldgnum;
shape[1] = 2;
rblapack_givnum = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
givnum = NA_PTR_TYPE(rblapack_givnum, doublereal*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_d_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
d_out__ = NA_PTR_TYPE(rblapack_d_out__, doublereal*);
MEMCPY(d_out__, d, doublereal, NA_TOTAL(rblapack_d));
rblapack_d = rblapack_d_out__;
d = d_out__;
{
na_shape_t shape[1];
shape[0] = m;
rblapack_vf_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
vf_out__ = NA_PTR_TYPE(rblapack_vf_out__, doublereal*);
MEMCPY(vf_out__, vf, doublereal, NA_TOTAL(rblapack_vf));
rblapack_vf = rblapack_vf_out__;
vf = vf_out__;
{
na_shape_t shape[1];
shape[0] = m;
rblapack_vl_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
vl_out__ = NA_PTR_TYPE(rblapack_vl_out__, doublereal*);
MEMCPY(vl_out__, vl, doublereal, NA_TOTAL(rblapack_vl));
rblapack_vl = rblapack_vl_out__;
vl = vl_out__;
zw = ALLOC_N(doublereal, (m));
vfw = ALLOC_N(doublereal, (m));
vlw = ALLOC_N(doublereal, (m));
idx = ALLOC_N(integer, (n));
idxp = ALLOC_N(integer, (n));
dlasd7_(&icompq, &nl, &nr, &sqre, &k, d, z, zw, vf, vfw, vl, vlw, &alpha, &beta, dsigma, idx, idxp, idxq, perm, &givptr, givcol, &ldgcol, givnum, &ldgnum, &c, &s, &info);
free(zw);
free(vfw);
free(vlw);
free(idx);
free(idxp);
rblapack_k = INT2NUM(k);
rblapack_givptr = INT2NUM(givptr);
rblapack_c = rb_float_new((double)c);
rblapack_s = rb_float_new((double)s);
rblapack_info = INT2NUM(info);
return rb_ary_new3(13, rblapack_k, rblapack_z, rblapack_dsigma, rblapack_perm, rblapack_givptr, rblapack_givcol, rblapack_givnum, rblapack_c, rblapack_s, rblapack_info, rblapack_d, rblapack_vf, rblapack_vl);
}
void
init_lapack_dlasd7(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dlasd7", rblapack_dlasd7, -1);
}
|