1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
#include "rb_lapack.h"
extern VOID dorghr_(integer* n, integer* ilo, integer* ihi, doublereal* a, integer* lda, doublereal* tau, doublereal* work, integer* lwork, integer* info);
static VALUE
rblapack_dorghr(int argc, VALUE *argv, VALUE self){
VALUE rblapack_ilo;
integer ilo;
VALUE rblapack_ihi;
integer ihi;
VALUE rblapack_a;
doublereal *a;
VALUE rblapack_tau;
doublereal *tau;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_work;
doublereal *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
doublereal *a_out__;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n work, info, a = NumRu::Lapack.dorghr( ilo, ihi, a, tau, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* DORGHR generates a real orthogonal matrix Q which is defined as the\n* product of IHI-ILO elementary reflectors of order N, as returned by\n* DGEHRD:\n*\n* Q = H(ilo) H(ilo+1) . . . H(ihi-1).\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The order of the matrix Q. N >= 0.\n*\n* ILO (input) INTEGER\n* IHI (input) INTEGER\n* ILO and IHI must have the same values as in the previous call\n* of DGEHRD. Q is equal to the unit matrix except in the\n* submatrix Q(ilo+1:ihi,ilo+1:ihi).\n* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.\n*\n* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n* On entry, the vectors which define the elementary reflectors,\n* as returned by DGEHRD.\n* On exit, the N-by-N orthogonal matrix Q.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* TAU (input) DOUBLE PRECISION array, dimension (N-1)\n* TAU(i) must contain the scalar factor of the elementary\n* reflector H(i), as returned by DGEHRD.\n*\n* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= IHI-ILO.\n* For optimum performance LWORK >= (IHI-ILO)*NB, where NB is\n* the optimal blocksize.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n work, info, a = NumRu::Lapack.dorghr( ilo, ihi, a, tau, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_ilo = argv[0];
rblapack_ihi = argv[1];
rblapack_a = argv[2];
rblapack_tau = argv[3];
if (argc == 5) {
rblapack_lwork = argv[4];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
ilo = NUM2INT(rblapack_ilo);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
a = NA_PTR_TYPE(rblapack_a, doublereal*);
ihi = NUM2INT(rblapack_ihi);
if (rblapack_lwork == Qnil)
lwork = ihi-ilo;
else {
lwork = NUM2INT(rblapack_lwork);
}
if (!NA_IsNArray(rblapack_tau))
rb_raise(rb_eArgError, "tau (4th argument) must be NArray");
if (NA_RANK(rblapack_tau) != 1)
rb_raise(rb_eArgError, "rank of tau (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_tau) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of tau must be %d", n-1);
if (NA_TYPE(rblapack_tau) != NA_DFLOAT)
rblapack_tau = na_change_type(rblapack_tau, NA_DFLOAT);
tau = NA_PTR_TYPE(rblapack_tau, doublereal*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, doublereal*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublereal*);
MEMCPY(a_out__, a, doublereal, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
dorghr_(&n, &ilo, &ihi, a, &lda, tau, work, &lwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_work, rblapack_info, rblapack_a);
}
void
init_lapack_dorghr(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dorghr", rblapack_dorghr, -1);
}
|