File: dsbgv.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (137 lines) | stat: -rw-r--r-- 8,530 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#include "rb_lapack.h"

extern VOID dsbgv_(char* jobz, char* uplo, integer* n, integer* ka, integer* kb, doublereal* ab, integer* ldab, doublereal* bb, integer* ldbb, doublereal* w, doublereal* z, integer* ldz, doublereal* work, integer* info);


static VALUE
rblapack_dsbgv(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobz;
  char jobz; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_ka;
  integer ka; 
  VALUE rblapack_kb;
  integer kb; 
  VALUE rblapack_ab;
  doublereal *ab; 
  VALUE rblapack_bb;
  doublereal *bb; 
  VALUE rblapack_w;
  doublereal *w; 
  VALUE rblapack_z;
  doublereal *z; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_ab_out__;
  doublereal *ab_out__;
  VALUE rblapack_bb_out__;
  doublereal *bb_out__;
  doublereal *work;

  integer ldab;
  integer n;
  integer ldbb;
  integer ldz;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, z, info, ab, bb = NumRu::Lapack.dsbgv( jobz, uplo, ka, kb, ab, bb, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  DSBGV computes all the eigenvalues, and optionally, the eigenvectors\n*  of a real generalized symmetric-definite banded eigenproblem, of\n*  the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric\n*  and banded, and B is also positive definite.\n*\n\n*  Arguments\n*  =========\n*\n*  JOBZ    (input) CHARACTER*1\n*          = 'N':  Compute eigenvalues only;\n*          = 'V':  Compute eigenvalues and eigenvectors.\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangles of A and B are stored;\n*          = 'L':  Lower triangles of A and B are stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrices A and B.  N >= 0.\n*\n*  KA      (input) INTEGER\n*          The number of superdiagonals of the matrix A if UPLO = 'U',\n*          or the number of subdiagonals if UPLO = 'L'. KA >= 0.\n*\n*  KB      (input) INTEGER\n*          The number of superdiagonals of the matrix B if UPLO = 'U',\n*          or the number of subdiagonals if UPLO = 'L'. KB >= 0.\n*\n*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)\n*          On entry, the upper or lower triangle of the symmetric band\n*          matrix A, stored in the first ka+1 rows of the array.  The\n*          j-th column of A is stored in the j-th column of the array AB\n*          as follows:\n*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;\n*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).\n*\n*          On exit, the contents of AB are destroyed.\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array AB.  LDAB >= KA+1.\n*\n*  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N)\n*          On entry, the upper or lower triangle of the symmetric band\n*          matrix B, stored in the first kb+1 rows of the array.  The\n*          j-th column of B is stored in the j-th column of the array BB\n*          as follows:\n*          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;\n*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).\n*\n*          On exit, the factor S from the split Cholesky factorization\n*          B = S**T*S, as returned by DPBSTF.\n*\n*  LDBB    (input) INTEGER\n*          The leading dimension of the array BB.  LDBB >= KB+1.\n*\n*  W       (output) DOUBLE PRECISION array, dimension (N)\n*          If INFO = 0, the eigenvalues in ascending order.\n*\n*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)\n*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n*          eigenvectors, with the i-th column of Z holding the\n*          eigenvector associated with W(i). The eigenvectors are\n*          normalized so that Z**T*B*Z = I.\n*          If JOBZ = 'N', then Z is not referenced.\n*\n*  LDZ     (input) INTEGER\n*          The leading dimension of the array Z.  LDZ >= 1, and if\n*          JOBZ = 'V', LDZ >= N.\n*\n*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  if INFO = i, and i is:\n*             <= N:  the algorithm failed to converge:\n*                    i off-diagonal elements of an intermediate\n*                    tridiagonal form did not converge to zero;\n*             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF\n*                    returned INFO = i: B is not positive definite.\n*                    The factorization of B could not be completed and\n*                    no eigenvalues or eigenvectors were computed.\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      LOGICAL            UPPER, WANTZ\n      CHARACTER          VECT\n      INTEGER            IINFO, INDE, INDWRK\n*     ..\n*     .. External Functions ..\n      LOGICAL            LSAME\n      EXTERNAL           LSAME\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           DPBSTF, DSBGST, DSBTRD, DSTEQR, DSTERF, XERBLA\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, z, info, ab, bb = NumRu::Lapack.dsbgv( jobz, uplo, ka, kb, ab, bb, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 6 && argc != 6)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
  rblapack_jobz = argv[0];
  rblapack_uplo = argv[1];
  rblapack_ka = argv[2];
  rblapack_kb = argv[3];
  rblapack_ab = argv[4];
  rblapack_bb = argv[5];
  if (argc == 6) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  jobz = StringValueCStr(rblapack_jobz)[0];
  ka = NUM2INT(rblapack_ka);
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (5th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (5th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_DFLOAT)
    rblapack_ab = na_change_type(rblapack_ab, NA_DFLOAT);
  ab = NA_PTR_TYPE(rblapack_ab, doublereal*);
  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_bb))
    rb_raise(rb_eArgError, "bb (6th argument) must be NArray");
  if (NA_RANK(rblapack_bb) != 2)
    rb_raise(rb_eArgError, "rank of bb (6th argument) must be %d", 2);
  ldbb = NA_SHAPE0(rblapack_bb);
  if (NA_SHAPE1(rblapack_bb) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of bb must be the same as shape 1 of ab");
  if (NA_TYPE(rblapack_bb) != NA_DFLOAT)
    rblapack_bb = na_change_type(rblapack_bb, NA_DFLOAT);
  bb = NA_PTR_TYPE(rblapack_bb, doublereal*);
  kb = NUM2INT(rblapack_kb);
  ldz = lsame_(&jobz,"V") ? n : 1;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  w = NA_PTR_TYPE(rblapack_w, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = ldz;
    shape[1] = n;
    rblapack_z = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  z = NA_PTR_TYPE(rblapack_z, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = ldab;
    shape[1] = n;
    rblapack_ab_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, doublereal*);
  MEMCPY(ab_out__, ab, doublereal, NA_TOTAL(rblapack_ab));
  rblapack_ab = rblapack_ab_out__;
  ab = ab_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldbb;
    shape[1] = n;
    rblapack_bb_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  bb_out__ = NA_PTR_TYPE(rblapack_bb_out__, doublereal*);
  MEMCPY(bb_out__, bb, doublereal, NA_TOTAL(rblapack_bb));
  rblapack_bb = rblapack_bb_out__;
  bb = bb_out__;
  work = ALLOC_N(doublereal, (3*n));

  dsbgv_(&jobz, &uplo, &n, &ka, &kb, ab, &ldab, bb, &ldbb, w, z, &ldz, work, &info);

  free(work);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(5, rblapack_w, rblapack_z, rblapack_info, rblapack_ab, rblapack_bb);
}

void
init_lapack_dsbgv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dsbgv", rblapack_dsbgv, -1);
}