1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
#include "rb_lapack.h"
extern VOID dstedc_(char* compz, integer* n, doublereal* d, doublereal* e, doublereal* z, integer* ldz, doublereal* work, integer* lwork, integer* iwork, integer* liwork, integer* info);
static VALUE
rblapack_dstedc(int argc, VALUE *argv, VALUE self){
VALUE rblapack_compz;
char compz;
VALUE rblapack_d;
doublereal *d;
VALUE rblapack_e;
doublereal *e;
VALUE rblapack_z;
doublereal *z;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_liwork;
integer liwork;
VALUE rblapack_work;
doublereal *work;
VALUE rblapack_iwork;
integer *iwork;
VALUE rblapack_info;
integer info;
VALUE rblapack_d_out__;
doublereal *d_out__;
VALUE rblapack_e_out__;
doublereal *e_out__;
VALUE rblapack_z_out__;
doublereal *z_out__;
integer n;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n work, iwork, info, d, e, z = NumRu::Lapack.dstedc( compz, d, e, z, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )\n\n* Purpose\n* =======\n*\n* DSTEDC computes all eigenvalues and, optionally, eigenvectors of a\n* symmetric tridiagonal matrix using the divide and conquer method.\n* The eigenvectors of a full or band real symmetric matrix can also be\n* found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this\n* matrix to tridiagonal form.\n*\n* This code makes very mild assumptions about floating point\n* arithmetic. It will work on machines with a guard digit in\n* add/subtract, or on those binary machines without guard digits\n* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.\n* It could conceivably fail on hexadecimal or decimal machines\n* without guard digits, but we know of none. See DLAED3 for details.\n*\n\n* Arguments\n* =========\n*\n* COMPZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only.\n* = 'I': Compute eigenvectors of tridiagonal matrix also.\n* = 'V': Compute eigenvectors of original dense symmetric\n* matrix also. On entry, Z contains the orthogonal\n* matrix used to reduce the original matrix to\n* tridiagonal form.\n*\n* N (input) INTEGER\n* The dimension of the symmetric tridiagonal matrix. N >= 0.\n*\n* D (input/output) DOUBLE PRECISION array, dimension (N)\n* On entry, the diagonal elements of the tridiagonal matrix.\n* On exit, if INFO = 0, the eigenvalues in ascending order.\n*\n* E (input/output) DOUBLE PRECISION array, dimension (N-1)\n* On entry, the subdiagonal elements of the tridiagonal matrix.\n* On exit, E has been destroyed.\n*\n* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)\n* On entry, if COMPZ = 'V', then Z contains the orthogonal\n* matrix used in the reduction to tridiagonal form.\n* On exit, if INFO = 0, then if COMPZ = 'V', Z contains the\n* orthonormal eigenvectors of the original symmetric matrix,\n* and if COMPZ = 'I', Z contains the orthonormal eigenvectors\n* of the symmetric tridiagonal matrix.\n* If COMPZ = 'N', then Z is not referenced.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1.\n* If eigenvectors are desired, then LDZ >= max(1,N).\n*\n* WORK (workspace/output) DOUBLE PRECISION array,\n* dimension (LWORK)\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK.\n* If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.\n* If COMPZ = 'V' and N > 1 then LWORK must be at least\n* ( 1 + 3*N + 2*N*lg N + 3*N**2 ),\n* where lg( N ) = smallest integer k such\n* that 2**k >= N.\n* If COMPZ = 'I' and N > 1 then LWORK must be at least\n* ( 1 + 4*N + N**2 ).\n* Note that for COMPZ = 'I' or 'V', then if N is less than or\n* equal to the minimum divide size, usually 25, then LWORK need\n* only be max(1,2*(N-1)).\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.\n*\n* LIWORK (input) INTEGER\n* The dimension of the array IWORK.\n* If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.\n* If COMPZ = 'V' and N > 1 then LIWORK must be at least\n* ( 6 + 6*N + 5*N*lg N ).\n* If COMPZ = 'I' and N > 1 then LIWORK must be at least\n* ( 3 + 5*N ).\n* Note that for COMPZ = 'I' or 'V', then if N is less than or\n* equal to the minimum divide size, usually 25, then LIWORK\n* need only be 1.\n*\n* If LIWORK = -1, then a workspace query is assumed; the\n* routine only calculates the optimal size of the IWORK array,\n* returns this value as the first entry of the IWORK array, and\n* no error message related to LIWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: The algorithm failed to compute an eigenvalue while\n* working on the submatrix lying in rows and columns\n* INFO/(N+1) through mod(INFO,N+1).\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Jeff Rutter, Computer Science Division, University of California\n* at Berkeley, USA\n* Modified by Francoise Tisseur, University of Tennessee.\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n work, iwork, info, d, e, z = NumRu::Lapack.dstedc( compz, d, e, z, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_compz = argv[0];
rblapack_d = argv[1];
rblapack_e = argv[2];
rblapack_z = argv[3];
if (argc == 6) {
rblapack_lwork = argv[4];
rblapack_liwork = argv[5];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
rblapack_liwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("liwork")));
} else {
rblapack_lwork = Qnil;
rblapack_liwork = Qnil;
}
compz = StringValueCStr(rblapack_compz)[0];
if (!NA_IsNArray(rblapack_z))
rb_raise(rb_eArgError, "z (4th argument) must be NArray");
if (NA_RANK(rblapack_z) != 2)
rb_raise(rb_eArgError, "rank of z (4th argument) must be %d", 2);
ldz = NA_SHAPE0(rblapack_z);
n = NA_SHAPE1(rblapack_z);
if (NA_TYPE(rblapack_z) != NA_DFLOAT)
rblapack_z = na_change_type(rblapack_z, NA_DFLOAT);
z = NA_PTR_TYPE(rblapack_z, doublereal*);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (2th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (2th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_d) != n)
rb_raise(rb_eRuntimeError, "shape 0 of d must be the same as shape 1 of z");
if (NA_TYPE(rblapack_d) != NA_DFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_DFLOAT);
d = NA_PTR_TYPE(rblapack_d, doublereal*);
if (rblapack_lwork == Qnil)
lwork = (lsame_(&compz,"N")||n<=1) ? 1 : lsame_(&compz,"V") ? 1+3*n+2*n*LG(n)+3*n*n : lsame_(&compz,"I") ? 1+4*n+2*n*n : 0;
else {
lwork = NUM2INT(rblapack_lwork);
}
if (!NA_IsNArray(rblapack_e))
rb_raise(rb_eArgError, "e (3th argument) must be NArray");
if (NA_RANK(rblapack_e) != 1)
rb_raise(rb_eArgError, "rank of e (3th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_e) != (n-1))
rb_raise(rb_eRuntimeError, "shape 0 of e must be %d", n-1);
if (NA_TYPE(rblapack_e) != NA_DFLOAT)
rblapack_e = na_change_type(rblapack_e, NA_DFLOAT);
e = NA_PTR_TYPE(rblapack_e, doublereal*);
if (rblapack_liwork == Qnil)
liwork = (lsame_(&compz,"N")||n<=1) ? 1 : lsame_(&compz,"V") ? 6+6*n+5*n*LG(n) : lsame_(&compz,"I") ? 3+5*n : 0;
else {
liwork = NUM2INT(rblapack_liwork);
}
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, doublereal*);
{
na_shape_t shape[1];
shape[0] = MAX(1,liwork);
rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
}
iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_d_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
d_out__ = NA_PTR_TYPE(rblapack_d_out__, doublereal*);
MEMCPY(d_out__, d, doublereal, NA_TOTAL(rblapack_d));
rblapack_d = rblapack_d_out__;
d = d_out__;
{
na_shape_t shape[1];
shape[0] = n-1;
rblapack_e_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
e_out__ = NA_PTR_TYPE(rblapack_e_out__, doublereal*);
MEMCPY(e_out__, e, doublereal, NA_TOTAL(rblapack_e));
rblapack_e = rblapack_e_out__;
e = e_out__;
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
z_out__ = NA_PTR_TYPE(rblapack_z_out__, doublereal*);
MEMCPY(z_out__, z, doublereal, NA_TOTAL(rblapack_z));
rblapack_z = rblapack_z_out__;
z = z_out__;
dstedc_(&compz, &n, d, e, z, &ldz, work, &lwork, iwork, &liwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(6, rblapack_work, rblapack_iwork, rblapack_info, rblapack_d, rblapack_e, rblapack_z);
}
void
init_lapack_dstedc(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dstedc", rblapack_dstedc, -1);
}
|