File: dsytri2.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (108 lines) | stat: -rw-r--r-- 6,209 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#include "rb_lapack.h"

extern VOID dsytri2_(char* uplo, integer* n, doublereal* a, integer* lda, integer* ipiv, doublereal* work, integer* lwork, integer* info);


static VALUE
rblapack_dsytri2(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_a;
  doublereal *a; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublereal *a_out__;
  integer c__1;
  integer c__m1;
  integer nb;
  doublereal *work;

  integer lda;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, a = NumRu::Lapack.dsytri2( uplo, a, ipiv, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE DSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  DSYTRI2 computes the inverse of a real symmetric indefinite matrix\n*  A using the factorization A = U*D*U**T or A = L*D*L**T computed by\n*  DSYTRF. DSYTRI2 sets the LEADING DIMENSION of the workspace\n*  before calling DSYTRI2X that actually computes the inverse.\n*\n\n*  Arguments\n*  =========\n*\n*  UPLO    (input) CHARACTER*1\n*          Specifies whether the details of the factorization are stored\n*          as an upper or lower triangular matrix.\n*          = 'U':  Upper triangular, form is A = U*D*U**T;\n*          = 'L':  Lower triangular, form is A = L*D*L**T.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n*          On entry, the NB diagonal matrix D and the multipliers\n*          used to obtain the factor U or L as computed by DSYTRF.\n*\n*          On exit, if INFO = 0, the (symmetric) inverse of the original\n*          matrix.  If UPLO = 'U', the upper triangular part of the\n*          inverse is formed and the part of A below the diagonal is not\n*          referenced; if UPLO = 'L' the lower triangular part of the\n*          inverse is formed and the part of A above the diagonal is\n*          not referenced.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,N).\n*\n*  IPIV    (input) INTEGER array, dimension (N)\n*          Details of the interchanges and the NB structure of D\n*          as determined by DSYTRF.\n*\n*  WORK    (workspace) DOUBLE PRECISION array, dimension (N+NB+1)*(NB+3)\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.\n*          WORK is size >= (N+NB+1)*(NB+3)\n*          If LDWORK = -1, then a workspace query is assumed; the routine\n*           calculates:\n*              - the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array,\n*              - and no error message related to LDWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0: successful exit\n*          < 0: if INFO = -i, the i-th argument had an illegal value\n*          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its\n*               inverse could not be computed.\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      LOGICAL            UPPER, LQUERY\n      INTEGER            MINSIZE, NBMAX\n*     ..\n*     .. External Functions ..\n      LOGICAL            LSAME\n      INTEGER            ILAENV\n      EXTERNAL           LSAME, ILAENV\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           DSYTRI2X\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, a = NumRu::Lapack.dsytri2( uplo, a, ipiv, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 4)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_uplo = argv[0];
  rblapack_a = argv[1];
  rblapack_ipiv = argv[2];
  if (argc == 4) {
    rblapack_lwork = argv[3];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_ipiv))
    rb_raise(rb_eArgError, "ipiv (3th argument) must be NArray");
  if (NA_RANK(rblapack_ipiv) != 1)
    rb_raise(rb_eArgError, "rank of ipiv (3th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_ipiv);
  if (NA_TYPE(rblapack_ipiv) != NA_LINT)
    rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  c__1 = 1;
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (2th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  if (NA_SHAPE1(rblapack_a) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 0 of ipiv");
  if (NA_TYPE(rblapack_a) != NA_DFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
  a = NA_PTR_TYPE(rblapack_a, doublereal*);
  c__m1 = -1;
  nb = ilaenv_(&c__1, "DSYTRF", &uplo, &n, &c__m1, &c__m1, &c__m1);
  if (rblapack_lwork == Qnil)
    lwork = (n+nb+1)*(nb+3);
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublereal*);
  MEMCPY(a_out__, a, doublereal, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  work = ALLOC_N(doublereal, (lwork));

  dsytri2_(&uplo, &n, a, &lda, ipiv, work, &lwork, &info);

  free(work);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(2, rblapack_info, rblapack_a);
}

void
init_lapack_dsytri2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "dsytri2", rblapack_dsytri2, -1);
}